Publikationen


Suche nach „[Rolf] [Rascher]“ hat 188 Publikationen gefunden
Suchergebnis als PDF
    NachhaltigAngewandte Naturwissenschaften und WirtschaftsingenieurwesenIPH Teisnach

    Beitrag (Sammelband oder Tagungsband)

    O. Fähnle, Christian Vogt, Rolf Rascher

    Load controlled process window analysis of feed controlled CNC grinding

    PROCEEDINGS VOLUME 10692 SPIE OPTICAL SYSTEMS DESIGN, 14-17 MAY 2018 Optical Fabrication, Testing, and Metrology VI, Frankfurt, Germany

    2018

    ISBN: 978-1-5106-1921-0

    DOI: 10.1117/12.2315336

    NachhaltigAngewandte Naturwissenschaften und WirtschaftsingenieurwesenIPH Teisnach

    Beitrag (Sammelband oder Tagungsband)

    O. Fähnle, O. Dambon, M. Doetz, F. Klocke, Christian Vogt, Rolf Rascher

    Ductile grinding of tungsten carbide applying standard CNC machines: a process analysis

    Proceedings of SPIE 10692: SPIE Optical Systems Design/Optical Fabrication, Testing, and Metrology VI (14.-17.05.2018; Frankfurt/Main)

    2018

    DOI: 10.1117/12.2315338

    NachhaltigAngewandte Naturwissenschaften und WirtschaftsingenieurwesenIPH Teisnach

    Beitrag (Sammelband oder Tagungsband)

    Christian J. Trum, Christian Vogt, Sebastian Sitzberger, Rolf Rascher, O. Fähnle

    Filled-Up-Microscopy (FUM): a non-destructive method for approximating the depth of sub-surface damage on ground surfaces

    Proceedings of SPIE 10829 (Fifth European Seminar on Precision Optics Manufacturing [April 10-11, 2018; Teisnach])

    2018

    ISBN: 978-1-5106-2270-8

    DOI: 10.1117/12.2318576

    NachhaltigAngewandte Naturwissenschaften und WirtschaftsingenieurwesenIPH Teisnach

    Beitrag (Sammelband oder Tagungsband)

    O. Fähnle, M. Doetz, O. Dambon, F. Klocke, Christian Vogt, Rolf Rascher

    Ductile mode single point diamond turning (SPDT) of binderless tungsten carbide molds

    Proceedings of SPIE Optical Engineering + Applications (19-23 August, 2018; Optical Manufacturing and Testing XII; San Diego, CA, USA), San Diego, United States, vol. 10742

    2018

    ISBN: 978-1-5106-2055-1

    DOI: 10.1117/12.2323244

    NachhaltigAngewandte Naturwissenschaften und WirtschaftsingenieurwesenIPH Teisnach

    Beitrag (Sammelband oder Tagungsband)

    O. Fähnle, Christian Vogt, Rolf Rascher, Marius Doetz, Olaf Dambon, Fritz Klocke

    From turning to grinding: ductile machining with gPVA

    Proceedings of SPIE Optical Engineering + Applications (19-23 August, 2018; Optical Manufacturing and Testing XII; San Diego, CA, USA), San Diego, United States, vol. 10742

    2018

    ISBN: 978-1-5106-2055-1

    DOI: 10.1117/12.2323246

    NachhaltigAngewandte Naturwissenschaften und WirtschaftsingenieurwesenIPH Teisnach

    Beitrag (Sammelband oder Tagungsband)

    O. Fähnle, Christian Vogt, Rolf Rascher, M. Doetz, O. Dambon, F. Klocke

    Ductile grinding of tungsten carbide molds applying standard CNC machines

    Proceedings of SPIE Optical Engineering + Applications (19-23 August, 2018; Optical Manufacturing and Testing XII; San Diego, CA, USA), San Diego, United States, vol. 10742

    2018

    ISBN: 978-1-5106-2055-1

    DOI: 10.1117/12.2323245

    NachhaltigIPH Teisnach

    Beitrag (Sammelband oder Tagungsband)

    Christian Vogt, Rolf Rascher, O. Fähnle, DaeWook Kim

    Closed-loop next generation laser polishing

    Proceedings of SPIE 10829 (Fifth European Seminar on Precision Optics Manufacturing [April 10-11, 2018; Teisnach])

    2018

    ISBN: 978-1-5106-2270-8

    DOI: 10.1117/12.2318749

    NachhaltigIPH Teisnach

    Beitrag (Sammelband oder Tagungsband)

    Christian Vogt, O. Fähnle, Rolf Rascher

    gPVA: a system for the classification of grinding tools

    Proceedings of SPIE 10829 (Fifth European Seminar on Precision Optics Manufacturing [April 10-11, 2018; Teisnach])

    2018

    ISBN: 978-1-5106-2270-8

    DOI: 10.1117/12.2318695

    NachhaltigIPH Teisnach

    Vortrag

    Christian Vogt, O. Fähnle, Eckart Langenbach, Rolf Rascher

    In situ laser monitoring of laser polishing

    119. Jahrestagung der Deutschen Gesellschaft für angewandte Optik (DGaO), Technische Hochschule Aalen

    2018

    Abstract anzeigen

    A novel fabrication parameter controlling method for laser polishing is presented, measuring within the footprint the smoothening process in real time. Recently, a new method for in situ measuring level of surface roughness has been developed [1] where a HeNe laser beam is being reflected from within the sample at the surface under test and the intensity of its reflected beam is being monitored.In this paper we report on an experimental study where this method has been applied to laser polishing. The internal local surface area under test is chosen to be located at the very spot where the laser polishing footprint is located from the outside of the sample melting its surface locally. Because fused silica is not transparent at the operating CO2 laser wavelength, the intensity of the reflected beam can be monitored enabling an in situ control of the laser polishing process. Consequently, the optimum dwell time can be determined, a footprint needs to stay at a certain point before moving further enabling a more stable and cost optimized polishing. [1] O.Fähnle,“In process monitoring of optics fabrication”, SPIEconference “PrecisionOptics Manufacturing”2017

    NachhaltigAngewandte Naturwissenschaften und WirtschaftsingenieurwesenIPH Teisnach

    Beitrag (Sammelband oder Tagungsband)

    Alexander Haberl, H. Harsch, Gerald Fütterer, Johannes Liebl, C. Pruß, Rolf Rascher, W. Osten

    Model based error separation of power spectral density artefacts in wavefront measurement

    Proceedings of SPIE 10749 (SPIE Optical Engineering + Applications Conference on Interferometry XIX [August 19-23, 2018; San Diego, CA, USA])

    2018

    DOI: 10.1117/12.2321106

    NachhaltigAngewandte Naturwissenschaften und WirtschaftsingenieurwesenIPH Teisnach

    Beitrag (Sammelband oder Tagungsband)

    Johannes Liebl, Christian Schopf, Rolf Rascher

    DefGO

    Proceedings of SPIE 10829 (Fifth European Seminar on Precision Optics Manufacturing [April 10-11, 2018; Teisnach])

    2018

    ISBN: 978-1-5106-2270-8

    DOI: 10.1117/12.2318704

    Abstract anzeigen

    The manufacturing of optical lenses has various steps. Generally, the manufacturing can be split up into the following steps: the workpiece is pre-ground with a coarse tool; it is then fine-ground with a finer tool. As the final polishing is a demanding and time-consuming process that cannot manage large removal rations not can it equalise rough shape errors, the starting quality and surface quality needs to be as high as possible. According to the current state of technology, ground lenses must be measured with tactile measuring techniques in order to detect shape errors. This is timeconsuming and expensive, and only two dimensional profiles can be measured. DefGO’s project objective is to introduce deflectometry as a new, three dimensional lens measuring standard. A problem with the application of deflectometry is that the object to be measured has to reflect enough light, which is not the case for ground glass with rough surfaces. DefGO’s solution is to wet the lens with a fluid to create a closed reflecting surface.

    NachhaltigAngewandte Naturwissenschaften und WirtschaftsingenieurwesenIPH Teisnach

    Beitrag (Sammelband oder Tagungsband)

    Olga Kukso, Rolf Rascher, R. Boerret, M. Pohl

    On the metrology of the MSF errors

    Proceedings of SPIE 10829 (Fifth European Seminar on Precision Optics Manufacturing [April 10-11, 2018; Teisnach])

    2018

    ISBN: 978-1-5106-2270-8

    DOI: 10.1117/12.2318675

    Abstract anzeigen

    The aim of our research is to study middle spatial frequency errors (MSFE) on optical surfaces. We investigate the surfaces after all manufacturing processes to find out the main affecting factors and to choose the proper processing parameters to minimize the size of the errors. In this paper we describe some middle spatial frequency errors, which occur during grinding. As there are limited possibilities to measure ground surfaces, their analysis from the point of measurement is most difficult. Therefore, it is of utmost importance to optimally organize the measurement guaranteeing sufficient data for the reconstruction of the toolpath and avoidance of aliasing effects. In the paper discuss possible classifications and some difficulties during measuring of grinded surfaces.

    NachhaltigAngewandte Naturwissenschaften und WirtschaftsingenieurwesenIPH Teisnach

    Beitrag (Sammelband oder Tagungsband)

    Sebastian Sitzberger, Christian J. Trum, Rolf Rascher, M. Zaeh

    Workpiece self-weight in precision optics manufacturing: compensation of workpiece deformations by a fluid bearing

    Proceedings of SPIE 10829 (Fifth European Seminar on Precision Optics Manufacturing [April 10-11, 2018; Teisnach])

    2018

    ISBN: 978-1-5106-2270-8

    DOI: 10.1117/12.2318577

    Abstract anzeigen

    The effects, the extent and the importance of workpiece deformations, particularly lenses, caused by the weight of the workpiece itself, were examined in a previous paper1 . The considered deformations are in the single-digit to two-digit nanometer range. The investigation was carried out by FEM calculations. The conclusion of the previous aper was that a full-surface support of a workpiece in the processing of one surface presumably produces the best results. Furthermore, it was found that if the second functional surface is not to be touched in the process, a full contact lens mounting on its circumference is advisable. An alternative method for fixing precision lenses is therefore desirable. This can be accomplished in two steps. As a first step, the lens must be gripped at its periphery so that none of the optically functional surfaces of the lens is compromised. However, the complete circumference has to be fixated gaplessly because a punctual fixation has the disadvantage of deforming the lens surface asymmetrically. As a second step, the freely hanging lens surface should be supported to minimize deformation. An approach had to be found that supports the surface like a solid bearing but at the same time does not touch it. Therefore, the usage of an incompressible fluid as a hydrostatic bearing for full-surface support is pursued. For this purpose, the bottom side of the lens has to be stored on water. The results of the FEM simulation showed that with a fluid bearing the resulting deformations can be drastically reduced in comparison to a freely hanging surface. Furthermore, under the right conditions, a resulting deformation comparable to a full surface solid support can be achieved. The content of this paper is a test series under laboratory conditions for a first validation of the theoretical results. Therefore, a prototype model to test a lens fixation with a fluid bearing was developed and manufactured. The resulting deformations were measured with an interferometer and the effects are discussed.

    NachhaltigAngewandte Naturwissenschaften und WirtschaftsingenieurwesenIPH Teisnach

    Beitrag (Sammelband oder Tagungsband)

    Alexander Haberl, Johannes Liebl, Rolf Rascher

    ABC-polishing

    Proceedings of SPIE 10829 (Fifth European Seminar on Precision Optics Manufacturing [April 10-11, 2018; Teisnach])

    2018

    ISBN: 978-1-5106-2270-8

    DOI: 10.1117/12.2318549

    Abstract anzeigen

    In the past, steadily increasing demands on the imaging properties of optics have led more and more precise spherical apertures. For a long time, these optical components have been produced in a satisfying quality using classic polishing methods such as pitch polishing. The advance of computer-controlled subaperture (SA) polishing techniques improved the accuracy of spheres. However, this new machine technology also made it possible to produce new lens geometries, such as aspheres. In contrast to classic polishing methods, the high determinism of SA polishing allows a very specific correction of the surface defect. The methods of magneto-rheological finishing (MRF) [1], [2] and ion beam figuring (IBF) [3], [4] stand out in particular because of the achievable shape accuracy. However, this leads to the fact that a principle of manufacturing "As exact as possible, as precise as necessary" [5] is often ignored. The optical surfaces often produced with unnecessary precision, result at least in increased processing times. The increasing interconnection of the production machines and the linking with databases already enables a consistent database to be established. It is possible to store measurements, process characteristics or tolerances for the individual production steps in a structured way. The difficulty, however, lies in the reasonable evaluation of the measurement data. This is where this publication comes in. The smart evaluation of the measurement data with the widespread Zernike polynomials should result in a classification, depending on the required manufacturing tolerance. In combination with the so-called ABC analysis, all surface defects can be categorized. In this way, an analytic breakdown of a - initially confusing - overall problem is made. With the aid of cost functions [6] an evaluation and consequently a deduction of actions is made possible. Thus, for example, the isolated processing of rotationally symmetrical errors in spiral mode, setup times and machining times can be reduced while avoiding mid spatial frequency errors (MSFE) at the same time.

    NachhaltigAngewandte Naturwissenschaften und WirtschaftsingenieurwesenIPH Teisnach

    Beitrag (Sammelband oder Tagungsband)

    M. Pohl, R. Boerret, Rolf Rascher, Olga Kukso

    Simulation of MSF errors using Fourier transform

    Proceedings of SPIE 10829 (Fifth European Seminar on Precision Optics Manufacturing [April 10-11, 2018; Teisnach])

    2018

    ISBN: 978-1-5106-2270-8

    DOI: 10.1117/12.2317484

    Abstract anzeigen

    This research is focused on the link between manufacturing parameters and the resulting mid spatial frequency error in the manufacturing process of precision optics. This first publication focuses on the parameters of the grinding step. The Goal is to understand and avoid the appearance of the mid spatial frequency error and develop a simulation which is able to predict the resulting mid spatial frequency error for/of a manufacturing process.

    NachhaltigAngewandte Naturwissenschaften und WirtschaftsingenieurwesenIPH Teisnach

    Vortrag

    Christian Vogt, Rolf Rascher

    grinding Process Validation Approach (gPVA)

    Posterpräsentation

    5. Tag der Forschung, Deggendorf

    2018

    NachhaltigAngewandte Naturwissenschaften und WirtschaftsingenieurwesenIPH Teisnach

    Vortrag

    Sebastian Sitzberger, Christian J. Trum, Rolf Rascher, M. Zaeh

    Workpiece self-weight induced deformation in precision optics manufacturing

    Posterpräsentation

    5. Tag der Forschung, Deggendorf

    2018

    NachhaltigAngewandte Naturwissenschaften und WirtschaftsingenieurwesenIPH Teisnach

    Vortrag

    Christian Schopf, Florian Schneider, Rolf Rascher

    ArenA – Foi: Erprobung des ADAPT-Polierwerkzeugs

    Posterpräsentation

    5. Tag der Forschung, Deggendorf

    2018

    Angewandte Naturwissenschaften und Wirtschaftsingenieurwesen

    Vortrag

    Olga Kukso, Rolf Rascher, M. Pohl, R. Börret

    EmmaV - Entstehungsmechanismen mittelfrequenter Fehler und deren aktive Vermeidung

    Posterpräsentation

    5. Tag der Forschung, Deggendorf

    2018

    NachhaltigAngewandte Naturwissenschaften und Wirtschaftsingenieurwesen

    Zeitschriftenartikel

    O. Fähnle, Rolf Rascher, Christian Vogt, D.W. Kim

    Closed-loop laser polishing using in-process surface finish metrology

    Applied Optics, vol. 57, no. 4, pp. 834-838

    2018

    DOI: 10.1364/AO.57.000834

    Abstract anzeigen

    This paper lays out the trail onto a closed-loop polishing process of optical elements enabling the application of the optimum polishing time needed. To that aim, an in-process testing method for monitoring an inclusive micro surface quality (e.g., comprising surface roughness and scratch-and-dig) within the polishing spot is analyzed and its applicability to closed-loop polishing for classical loose-abrasive full-aperture polishing as well as for computer controlled laser polishing is experimentally tested and verified. This enables the determination of the optimum local dwell time resulting in a stable and cost optimized polishing.