Publikationen


Suche nach „[Z.] [Zhang]“ hat 4 Publikationen gefunden
Suchergebnis als PDF
    NachhaltigElektrotechnik und Medientechnik

    Zeitschriftenartikel

    J. Michalicka, S. Li, Z. Bi, Y. Zhang, Ondrej Man, Y. Hong, Y. Wu, W. Ni, H. Fan, Günther Benstetter, L. Liu, Q. Yang, D. Liu

    The effect of O2 impurity on surface morphology of polycrystalline W during low-energy and high-flux He+ irradiation

    Fusion Engineering and Design, vol. 139, pp. 96-103

    2019

    DOI: 10.1016/j.fusengdes.2019.01.003

    Abstract anzeigen

    The interaction between the impurities (such as carbon, nitrogen, oxygen) and the plasma-facing materials (PFMs) can profoundly influence the performance and service of the PFMs. In this paper, we investigated the influence of oxygen (O2) impurity in the helium radio frequency (RF) plasma on the surface morphology of polycrystalline tungsten (W) irradiated at the surface temperature of 1450 ± 50 K and the ion energy of 100 eV. The pressure ratio of O2 to He (R) in RF source varied from 4.0 × 10−6 to 9.0 × 10-2. The total irradiation flux and fluence were ˜1.2 × 1022 ions·m-2·s-1 and ˜1.0 × 1026 ions·m-2, respectively. After He+ irradiation, the specimen surface morphology was observed by scanning electron microscopy. It was found that with increasing R from 4.0 × 10−6 to 9.0 × 10-2 the thickness of nano-fuzz layer at the W surface was thinner and thinner, accompanied by the formation of rod-like structures. The erosion yield increased from 5.2 × 10-4 to 2.3 × 10-2 W/ion when R varied from 4.0 × 10-6 to 9.0 × 10-2. The X-ray diffraction analysis shows that tungsten oxides were formed at the near surface of specimens when R exceeded 1.8 × 10-2. The erosion yield measurements revealed that in addition to surface physical sputtering process, the chemical erosion process could occur due to the interaction between oxygen-containing species and W at the surface. The results indicated that the presence of O2 impurity in He plasma can obviously affect the surface microstructure of W. The study suggested that O2 impurity can effectively reduce the growth of nano-fuzz structures.

    NachhaltigElektrotechnik und Medientechnik

    Zeitschriftenartikel

    S. Li, Z. Bi, Y. Zhang, D. Liu, Y. Hong, Y. Wu, W. Ni, H. Fan, Günther Benstetter, L. Liu, Q. Yang

    Surface damages of polycrystalline W and La2O3-doped W induced by high-flux He plasma irradiation

    Journal of Nuclear Materials, vol. 501, no. April, pp. 275-281

    2018

    Abstract anzeigen

    In this study, polycrystalline tungsten (W) and three oxide dispersed strengthened W with 0.1 vol %, 1.0 vol % and 5.0 vol % lanthanum trioxide (La2O3) were irradiated with low-energy (200 eV) and high-flux (5.8 × 1021 or 1.4 × 1022 ions/m2⋅s) He+ ions at elevated temperature. After He+ irradiation at a fluence of 3.0 × 1025/m2, their surface damages were observed by scanning electron microscopy, energy dispersive spectroscopy, scanning electron microscopy-electron backscatter diffraction, and conductive atomic force microscopy. Micron-sized holes were formed on the surface of W alloys after He+ irradiation at 1100 K. Analysis shows that the La2O3 grains doped in W were sputtered preferentially by the high-flux He+ ions when compared with the W grains. For irradiation at 1550 K, W nano-fuzz was formed at the surfaces of both polycrystalline W and La2O3-doped W. The thickness of the fuzz layers formed at the surface of La2O3-doped W is 40% lower than the one of polycrystalline W. The presence of La2O3 could suppress the diffusion and coalescence of He atoms inside W, which plays an important role in the growth of nanostructures fuzz.

    IQWSonstige

    Zeitschriftenartikel

    D. Stoloff, Andreas Gegenfurtner, A. Naaji, M. Hammond, P.-O. Zander, N. Adedokun-Shittu, J. Foland, A. Al Saif, A. Moreira, L. Sujo-Montes, K. Kinley, M. Coto, K. Charalambous, V. Mbarika, M. Joy, J. Tondeur, S. Gregory, I. Venter, J. Elen, E. Mazzoni, Z. Zhang, López de la Madrid, M.C., M. Rocha Lucas, A. Oni, Y. Al-Saggaf, D. Vlachopoulos, C. Sanga, S. Padilla Partida, A. Gogus, M. Kalz, L. Teixeira Pombo, H. Lee, J. Balaban Sali, K. Oliver, Odeh Helal Jwaifell, M., K. Jordan, V. Padilla Vigil, M. Awshar, M.N.H.M. Said, N. Pinkwart, J. White, Y. Liu, J. Gerstein, B. Sbihi, P. Nleya, C. Tannahill, I. Erguvan, P. Jerry, M. Santally, T. Bushnaq, İ. Umit Yapici, R. Badosek, A. Al Lily, U. Sambuu, S. Schatz, P. Häkkinen, et al., S. Tobgay, S. Schön

    Academic domains as political battlegrounds

    A global enquiry by 99 academics in the fields of education and technology

    Information Development, vol. 33, no. 3, pp. 270-288

    2017

    DOI: 10.1177/0266666916646415

    Abstract anzeigen

    This article theorizes the functional relationship between the human components (i.e., scholars) and non-human components (i.e., structural configurations) of academic domains. It is organized around the following question: in what ways have scholars formed and been formed by the structural configurations of their academic domain? The article uses as a case study the academic domain of education and technology to examine this question. Its authorship approach is innovative, with a worldwide collection of academics (99 authors) collaborating to address the proposed question based on their reflections on daily social and academic practices. This collaboration followed a three-round process of contributions via email. Analysis of these scholars’ reflective accounts was carried out, and a theoretical proposition was established from this analysis. The proposition is of a mutual (yet not necessarily balanced) power (and therefore political) relationship between the human and non-human constituents of an academic realm, with the two shaping one another. One implication of this proposition is that these non-human elements exist as political ‘actors’, just like their human counterparts, having ‘agency’ – which they exercise over humans. This turns academic domains into political (functional or dysfunctional) ‘battlefields’ wherein both humans and non-humans engage in political activities and actions that form the identity of the academic domain.

    Elektrotechnik und Medientechnik

    Zeitschriftenartikel

    Z. Shen, M. Nafría, X. Aymerich, V. Iglesias, K. Zhang, G. Bersuker, Günther Benstetter, M. Porti, M. Lanza, A. Bayerl

    Degradation of polycrystalline HfO2 based gate dielectrics under nanoscale electrical stress

    Applied Physics Letters, vol. 99

    2011

    Abstract anzeigen

    The evolution of the electrical properties of HfO2/SiO2/Si dielectric stacks under electrical stress has been investigated using atomic force microscope-based techniques. The current through the grain boundaries (GBs), which is found to be higher than thorough the grains, is correlated to a higher density of positively charged defects at the GBs. Electrical stress produces different degradation kinetics in the grains and GBs, with a much shorter time to breakdown in the latter, indicating that GBs facilitate dielectric breakdown in high-k gate stacks.