Publikationen


Suche nach „[X.] [Chen]“ hat 2 Publikationen gefunden
Suchergebnis als PDF
    NachhaltigElektrotechnik und MedientechnikIQMA

    Zeitschriftenartikel

    S. Chen, L. Jiang, M. Buckwell, X. Jing, Y. Ji, E. Grustan-Gutierrez, Günther Benstetter, F. Hui, Y. Shi, M. Rommel, A. Paskaleva, W. Ng, A. Mehonic, A. Kenyon, M. Lanza

    On the Limits of Scalpel AFM for the 3D Electrical Characterization of Nanomaterials

    Advanced Functional Materials, vol. 28, no. 52

    2018

    DOI: 10.1002/adfm.201802266

    Abstract anzeigen

    Conductive atomic force microscopy (CAFM) has been widely used for electrical characterization of thin dielectrics by applying a gentle contact force that ensures a good electrical contact without inducing additional high‐pressure related phenomena (e.g., flexoelectricity, local heat, scratching). Recently, the CAFM has been used to obtain 3D electrical images of thin dielectrics by etching their surface. However, the effect of the high contact forces/pressures applied during the etching on the electrical properties of the materials has never been considered. By collecting cross‐sectional transmission electron microscopy images at the etched regions, it is shown here that the etching process can modify the morphology of Al2O3 thin films (producing phase change, generation of defects, and metal penetration). It is also observed that this technique severely modifies the electrical properties of pSi and TiO2 wafers during the etching, and several behaviors ignored in previous studies, including i) observation of high currents in the absence of bias, ii) instabilities of etching rate, and iii) degradation of CAFM tips, are reported. Overall, this work should contribute to understand better the limitations of this technique and disseminate it among those applications in which it can be really useful.

    Elektrotechnik und MedientechnikIQMA

    Zeitschriftenartikel

    D. Liu, Günther Benstetter, Edgar Lodermeier, X. Chen, J. Ding, Y. Liu, J. Zhang, T. Ma

    Surface and structural properties of ultrathin diamond-like carbon coatings

    Diamond and Related Materials, vol. 12, pp. 1594-1600

    2003

    DOI: 10.1016/S0925-9635(03)00248-6

    Abstract anzeigen

    Nanoscale wear resistance, friction, and electrical conduction tests using atomic force microscope (AFM) have been conducted on ultrathin diamond-like carbon (DLC) coatings, including tetrahedral amorphous carbon (ta-C) deposited using pulsed cathodic arc (PCA) and filtered-PCA, and hydrogenated amorphous carbon (a-C:H) deposited using electron cyclotron resonance—chemical vapor deposition (ECR-CVD). The low-resistant layers at the surfaces of these thin DLC coatings were revealed by AFM-based nanowear tests. Their thickness is mainly determined by the deposition methods and does not show an obvious variation with the coating thickness decreasing from tens of nm to a few nm. The ∼3 nm ta-C coatings from PCA and filtered-PCA deposition were found to have the stable bulk structure beneath the thin (0.3–0.95 nm) surface layers. The ∼3 nm a-C:H coating from ECR-CVD had the extremely low load-carrying capacity and exhibited the evidence of coating delamination, which can be related to the thicker (1.5±0.1 nm) soft surface layers of a-C:H coatings. The results from conducting-AFM measurements indicate that a-C:H coatings have H and sp3 C enrichment surface layers while the soft surface layers of ta-C coatings have graphite-like structure. The nanoscale friction coefficients of these thin ta-C and a-C:H coatings were compared by AFM-based lateral force microscope. The lower friction coefficient of ta-C coatings can be attributed to the existence of graphite-like surface structure.