Suche nach „[T.] [Reitmaier]“ hat 1 Publikationen gefunden
Suchergebnis als PDF
    F: Maschinenbau und Mechatronik


    E. Fuchs, C. Gruber, T. Reitmaier, Bernhard Sick

    Processing Short-Term and Long-Term Information With a Combination of Polynomial Approximation Techniques and Time-Delay Neural Networks

    IEEE Transactions on Neural Networks, vol. 20, no. 9, pp. 1450-1462


    Abstract anzeigen

    Neural networks are often used to process temporal information, i.e., any kind of information related to time series. In many cases, time series contain short-term and long-term trends or behavior. This paper presents a new approach to capture temporal information with various reference periods simultaneously. A least squares approximation of the time series with orthogonal polynomials will be used to describe short-term trends contained in a signal (average, increase, curvature, etc.). Long-term behavior will be modeled with the tapped delay lines of a time-delay neural network (TDNN). This network takes the coefficients of the orthogonal expansion of the approximating polynomial as inputs such considering short-term and long-term information efficiently. The advantages of the method will be demonstrated by means of artificial data and two real-world application examples, the prediction of the user number in a computer network and online tool wear classification in turning.