Publikationen


Suche nach „[S.] [Niessen]“ hat 4 Publikationen gefunden
Suchergebnis als PDF
    DigitalNachhaltigF: Europan Campus Rottal-Inn

    Zeitschriftenartikel

    M. Metzger, M. Duckheim, M. Franken, H. Heger, Matthias Huber, M. Knittel, T. Kolster, M. Kueppers, C. Meier, D. Most, S. Paulus, L. Wyrwoll, A. Moser, S. Niessen

    Pathways toward a Decarbonized Future—Impact on Security of Supply and System Stability in a Sustainable German Energy System

    Energies, vol. 14, no. 3

    2021

    DOI: 10.3390/en14030560

    Abstract anzeigen

    Pathways leading to a carbon neutral future for the German energy system have to deal with the expected phase-out of coal-fired power generation, in addition to the shutdown of nuclear power plants and the rapid ramp-up of photovoltaics and wind power generation. An analysis of the expected impact on electricity market, security of supply, and system stability must consider the European context because of the strong coupling—both from an economic and a system operation point of view—through the cross-border power exchange of Germany with its neighbors. This analysis, complemented by options to improve the existing development plans, is the purpose of this paper. We propose a multilevel energy system modeling, including electricity market, network congestion management, and system stability, to identify challenges for the years 2023 and 2035. Out of the results, we would like to highlight the positive role of innovative combined heat and power (CHP) solutions securing power and heat supply, the importance of a network congestion management utilizing flexibility from sector coupling, and the essential network extension plans. Network congestion and reduced security margins will become the new normal. We conclude that future energy systems require expanded flexibilities in combination with forward planning of operation.

    DigitalNachhaltigF: Europan Campus Rottal-Inn

    Zeitschriftenartikel

    Kueppers. M., S. Paredes Pineda, M. Metzger, Matthias Huber, S. Paulus, H. Heger, S. Niessen

    Decarbonization pathways of worldwide energy systems – Definition and modeling of archetypes

    Applied Energy, vol. 285, no. 01 March 2021

    2021

    DOI: 10.1016/j.apenergy.2021.116438

    Abstract anzeigen

    Energy system models help to find the optimal technology mixes for decarbonization strategies in countries worldwide. To reduce the modeling effort and analyze as many countries as possible, this paper proposes a novel approach of energy system archetypes which can be directly evaluated. These archetypes classify similar countries worldwide independently from their geographic location. Advantages of this idea are the setup of a transferable global database allowing for data reconstruction between countries, market size estimations, and the ability to compare peer countries facing similar challenges. To enable such modeling, a framework is developed in which the archetypes are defined, standardized modeling rules are developed, and the results are evaluated for validation. In a benchmark against simple geographic classifications, the presented clustering approach, which results in 15 archetypes, improves the variance between all countries and their corresponding archetypes by 44% compared to the variance between the countries and their geographic sub-regions. The model results of these archetypes state the need of balancing technologies for the daily cycle of photovoltaic generation and the general importance of flexibility in future decarbonized energy systems. Overall, the results confirm that archetypes are an adequate approach to derive the set of solutions for the decarbonization of worldwide countries.

    DigitalNachhaltigF: Europan Campus Rottal-Inn

    Zeitschriftenartikel

    Kueppers. M., C. Perau, M. Franken, H. Heger, Matthias Huber, M. Metzger, S. Niessen

    Data-Driven Regionalization of Decarbonized Energy Systems for Reflecting Their Changing Topologies in Planning and Optimization

    Energies, vol. 13, no. 16

    2020

    DOI: 10.3390/en13164076

    Abstract anzeigen

    The decarbonization of energy systems has led to a fundamental change in their topology since generation is shifted to locations with favorable renewable conditions. In planning, this change is reflected by applying optimization models to regions within a country to optimize the distribution of generation units and to evaluate the resulting impact on the grid topology. This paper proposes a globally applicable framework to find a suitable regionalization for energy system models with a data-driven approach. Based on a global, spatially resolved database of demand, generation, and renewable profiles, hierarchical clustering with fine-tuning is performed. This regionalization approach is applied by modeling the resulting regions in an optimization model including a synthesized grid. In an exemplary case study, South Africa’s energy system is examined. The results show that the data-driven regionalization is beneficial compared to the common approach of using political regions. Furthermore, the results of a modeled 80% decarbonization until 2045 demonstrate that the integration of renewable energy sources fundamentally changes the role of regions within South Africa’s energy system. Thereby, the electricity exchange between regions is also impacted, leading to a different grid topology. Using clustered regions improves the understanding and analysis of regional transformations in the decarbonization process.

    DigitalNachhaltigF: Europan Campus Rottal-Inn

    Beitrag (Sammelband oder Tagungsband)

    D. Husarek, S. Paulus, Matthias Huber, M. Metzger, S. Niessen

    The Contribution of Carbon- Optimized Battery Electric Vehicle Charging to the Decarbonization of a Multi-Modal Energy System

    3rd E-Mobility Power System Integration Symposium

    2019