Publikationen


Suche nach „[S.] [Buchholz]“ hat 4 Publikationen gefunden
Suchergebnis als PDF
    NachhaltigF: Maschinenbau und Mechatronik

    Zeitschriftenartikel

    T. Mull, T. Wagner, Giuseppe Bonfigli, S. Buchholz, Frank Schäfer, E. Schleicher, C. Schuster, M. Sporn

    Safety cases for design-basis accidents in LWRs featuring passive systems

    [In Press]

    Nuclear Engineering and Design, no. Available online 26 February 2021

    2021

    DOI: 10.1016/j.nucengdes.2021.111095

    Abstract anzeigen

    This paper presents results from a series of integral tests performed at Framatome’s INKA test facility in Karlstein (Germany) which simulates a KERENA boiling water reactor (BWR). The scope of the test series was on the behaviour of and interaction between the different passive systems and components under the conditions of extended loss of alternating power (ELAP). These SBO-like conditions were aggravated in three out of four tests by parallel LOCA (Loss of Coolant Accident). The scenarios of all four tests fully correspond to Design Basic Conditions (DBC). They were: main steam line break, feed water line break, reactor pressure vessel (RPV) bottom leak and station blackout (SBO, non-LOCA). In the tests, the passive systems integrated in KERENA and INKA, respectively, have fulfilled their design functions fully satisfactorily and as follows: The Passive Pressure Pulse Transmitter (PPPT) triggered the RPV depressurization without delay. The Emergency Condenser (EC) system removed decay heat along with stored energy from the RPV to the containment. The Containment Cooling Condenser (CCC) system forwarded said power to a heat sink outside of the containment. The passive containment pressure suppression system kept the containment pressure within the design range, partially displacing surplus thermal energy from the drywell to the wetwell, in particular in the early phases after occurrence of LOCA. The passive core flooding system replenished the coolant inventory of the RPV thereby ensuring water levels in the RPV which are fully sufficient for core cooling. Moreover, the systems have cooperated as anticipated by the designers, quietly and without perturbing each other. Hence the test results, which are reported and discussed more in detail within this paper, soundly confirm the underlying design and its passive features. Said tests were carried out as a part of the joint research project EASY (Evidence of Design Basis Accidents Mitigation solely with passive safety Systems), the overarching objective of which was the development and validation of the code system AC2 of GRS (Gesellschaft für Anlagen- und Reaktorsicherheit gGmbH).

    NachhaltigF: Maschinenbau und Mechatronik

    Zeitschriftenartikel

    Giuseppe Bonfigli, S. Buchholz, F. Schäfer, Nadine Kaczmarkiewicz, C. Schuster, M. Sporn

    Safety cases for design-basis accidents in LWRs featuring passive systems Part 2 – Numerical investigations

    Nuclear Engineering and Design, vol. 372, no. February

    2021

    DOI: 10.1016/j.nucengdes.2020.110996

    Abstract anzeigen

    This paper deals with the improvement and validation of numerical tools for the simulation of design basis accidents in nuclear power plants equipped with passive safety systems. Numerical models are implemented in the framework of the 1-D thermal–hydraulic system code ATHLET developed by GRS. Experimental reference data for the validation were obtained at the INKA test facility, a model of the KERENA reactor, reproducing the passive safety systems nearly at full scale. The validation effort focuses firstly on the accuracy of the models for the single passive components, and secondly on the ability of the numerical simulation to reproduce the interaction of all components of the KERENA design under realistic conditions as reproduced in the INKA test facility. Thermal-hydraulic models are presented and validated for two passive components of the KERENA reactor: the passive pressure pulse transmitter and the pressure-controlled flooding valve. Finally, the full model of the INKA facility, including these and other passive components, is discussed and numerical results for simulations reproducing three different design basis accidents are validated by comparison with the corresponding experimental data.

    NachhaltigF: Maschinenbau und Mechatronik

    Beitrag (Sammelband oder Tagungsband)

    S. Buchholz, W. Klein-Hessling, Giuseppe Bonfigli, Nadine Kaczmarkiewicz, N. Neukam, F. Schäfer, T. Wagner

    The Code System AC2 for the Simulation of Advanced Reactors within the Frame of the German EASY Project

    Proceedings of the 17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-17) [September 3-8, 2017; Qujiang Int’l Conference Center, Xi’an, Shaanxi, China]

    2017

    NachhaltigF: Maschinenbau und Mechatronik

    Beitrag (Sammelband oder Tagungsband)

    S. Buchholz, A. Schaffrath, Giuseppe Bonfigli, Nadine Kaczmarkiewicz, N. Neukam, F. Schäfer, T. Wagner

    Evidence of Design Basis Accidents Mitigation Solely with Passive Safety Systems within the Frame of the German EASY Project

    Proceedings of the 17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-17) [September 3-8, 2017; Qujiang Int’l Conference Center, Xi’an, Shaanxi, China]

    2017