Suche nach „[N.] [Lu]“ hat 1 Publikationen gefunden
Suchergebnis als PDF
    NachhaltigF: Elektrotechnik und Medientechnik


    C. Niu, Y. Zhang, Y. Cui, X. Li, W. Liu, W. Ni, H. Fan, N. Lu, Günther Benstetter, G. Lei, D. Liu

    Effect of temperature on the growth and surface bursting of He nano-bubbles in W under fusion-relevant He ion irradiations

    Fusion Engineering and Design, vol. 163, no. Available online 26 December 2020


    DOI: 10.1016/j.fusengdes.2020.112159

    Abstract anzeigen

    Under fusion-relevant He+ irradiations, the W surface temperature is one of the most important parameters for controlling the fuzz growth over the W divertor targets, which is associated with the surface bursting of He nano-bubbles. Using He reaction rate model in W, we investigate the effect of temperature on the growth and surface bursting of He nano-bubbles under low-energy (100 eV) and large-flux (∼1022/m2⋅s) He+ irradiations. Increasing the irradiation temperature from 750 to 2500 K leads to a significant change in both the radius of He nano-bubbles and He retention. At an elevated temperature, He solute atoms prefer to rapidly diffuse into He nano-bubbles, thus affecting their concentration, growth and surface bursting. The decrease in He retention is attributed to an increase in the hop rate of solute He atoms in the W top layer, resulting in the significant He release from the W surface. The radius and density of He nano-bubbles calculated by our model are consistent with our experimental observation.