Publikationen


Suche nach „[M.] [Weber]“ hat 13 Publikationen gefunden
Suchergebnis als PDF
    NachhaltigF: Europan Campus Rottal-InnS: TC Freyung

    Zeitschriftenartikel

    Javier Valdés, Sebastian Wöllmann, Andreas Weber, G. Klaus, Christina Sigl, M. Prem, Robert Bauer, Roland Zink

    A framework for regional smart energy planning using volunteered geographic information

    Advances in Geosciences, vol. 54, no. 10 December 2020, pp. 179-193

    2020

    DOI: 10.5194/adgeo-54-179-2020

    Abstract anzeigen

    This study presents a framework for regional smart energy planning for the optimal location and sizing of small hybrid systems. By using an optimization model – in combination with weather data – various local energy systems are simulated using the Calliope and PyPSA energy system simulation tools. The optimization and simulation models are fed with GIS data from different volunteered geographic information projects, including OpenStreetMap. These allow automatic allocation of specific demand profiles to diverse OpenStreetMap building categories. Moreover, based on the characteristics of the OpenStreetMap data, a set of possible distributed energy resources, including renewables and fossil-fueled generators, is defined for each building category. The optimization model can be applied for a set of scenarios based on different assumptions on electricity prices and technologies. Moreover, to assess the impact of the scenarios on the current distribution infrastructure, a simulation model of the low- and medium-voltage network is conducted. Finally, to facilitate their dissemination, the results of the simulation are stored in a PostgreSQL database, before they are delivered by a RESTful Laravel Server and displayed in an angular web application.

    NachhaltigF: Elektrotechnik und MedientechnikI: IQMA

    Zeitschriftenartikel

    Christoph Metzke, Werner Frammelsberger, Jonas Weber, Fabian Kühnel, K. Zhu, M. Lanza, Günther Benstetter

    On the Limits of Scanning Thermal Microscopy of Ultrathin Films

    Materials, vol. 13, no. 3

    2020

    DOI: 10.3390/ma13030518

    Abstract anzeigen

    Heat transfer processes in micro- and nanoscale devices have become more and more important during the last decades. Scanning thermal microscopy (SThM) is an atomic force microscopy (AFM) based method for analyzing local thermal conductivities of layers with thicknesses in the range of several nm to µm. In this work, we investigate ultrathin films of hexagonal boron nitride (h-BN), copper iodide in zincblende structure (γ-CuI) and some test sample structures fabricated of silicon (Si) and silicon dioxide (SiO2) using SThM. Specifically, we analyze and discuss the influence of the sample topography, the touching angle between probe tip and sample, and the probe tip temperature on the acquired results. In essence, our findings indicate that SThM measurements include artefacts that are not associated with the thermal properties of the film under investigation. We discuss possible ways of influence, as well as the magnitudes involved. Furthermore, we suggest necessary measuring conditions that make qualitative SThM measurements of ultrathin films of h-BN with thicknesses at or below 23 nm possible.

    DigitalNachhaltigExtern

    Zeitschriftenartikel

    Johannes Käsbauer, Anton Schmailzl, U. Weber, S. Hierl, T. Jaus, M. Schwalme

    Simulationsgestütze Evaluierung von Strahloszillationsmustern beim quasi-simultanen Laser-Durchstrahlschweißen.

    Joining Plastics - Fügen von Kunststoffen, no. 2, pp. 102-109

    2019

    NachhaltigF: Elektrotechnik und MedientechnikF: Maschinenbau und MechatronikI: IQMA

    Zeitschriftenartikel

    L. Jiang, Jonas Weber, F. Puglisi, P. Pavan, L. Larcher, Werner Frammelsberger, Günther Benstetter, M. Lanza

    Understanding Current Instabilities in Conductive Atomic Force Microscopy

    Materials, vol. 12, no. 3

    2019

    DOI: 10.3390/ma12030459

    Abstract anzeigen

    Conductive atomic force microscopy (CAFM) is one of the most powerful techniques in studying the electrical properties of various materials at the nanoscale. However, understanding current fluctuations within one study (due to degradation of the probe tips) and from one study to another (due to the use of probe tips with different characteristics), are still two major problems that may drive CAFM researchers to extract wrong conclusions. In this manuscript, these two issues are statistically analyzed by collecting experimental CAFM data and processing them using two different computational models. Our study indicates that: (i) before their complete degradation, CAFM tips show a stable state with degraded conductance, which is difficult to detect and it requires CAFM tip conductivity characterization before and after the CAFM experiments; and (ii) CAFM tips with low spring constants may unavoidably lead to the presence of a ~1.2 nm thick water film at the tip/sample junction, even if the maximum contact force allowed by the setup is applied. These two phenomena can easily drive CAFM users to overestimate the properties of the samples under test (e.g., oxide thickness). Our study can help researchers to better understand the current shifts that were observed during their CAFM experiments, as well as which probe tip to use and how it degrades. Ultimately, this work may contribute to enhancing the reliability of CAFM investigations.

    GesundF: Europan Campus Rottal-Inn

    Zeitschriftenartikel

    M. Steffens, C. Neumann, Anna-Maria Kasparbauer, B. Becker, B. Weber, M. Mehta, R. Hurlemann, U. Ettinger

    Effects of ketamine on brain function during response inhibition

    Psychopharmacology, vol. 235, pp. 3559-3571

    2018

    DOI: 10.1007/s00213-018-5081-7

    Abstract anzeigen

    Introduction The uncompetitive N-methyl-D-aspartate (NMDA) receptor (NMDAR) antagonist ketamine has been proposed to model symptoms of psychosis. Inhibitory deficits in the schizophrenia spectrum have been reliably reported using the antisaccade task. Interestingly, although similar antisaccade deficits have been reported following ketamine in non-human primates, ketamine-induced deficits have not been observed in healthy human volunteers. Methods To investigate the effects of ketamine on brain function during an antisaccade task, we conducted a double-blind, placebo-controlled, within-subjects study on n = 15 healthy males. We measured the blood oxygen level dependent (BOLD) response and eye movements during a mixed antisaccade/prosaccade task while participants received a subanesthetic dose of intravenous ketamine (target plasma level 100 ng/ml) on one occasion and placebo on the other occasion. Results While ketamine significantly increased self-ratings of psychosis-like experiences, it did not induce antisaccade or prosaccade performance deficits. At the level of BOLD, we observed an interaction between treatment and task condition in somatosensory cortex, suggesting recruitment of additional neural resources in the antisaccade condition under NMDAR blockage. Discussion Given the robust evidence of antisaccade deficits in schizophrenia spectrum populations, the current findings suggest that ketamine may not mimic all features of psychosis at the dose used in this study. Our findings underline the importance of a more detailed research to further understand and define effects of NMDAR hypofunction on human brain function and behavior, with a view to applying ketamine administration as a model system of psychosis. Future studies with varying doses will be of importance in this context.

    GesundF: Europan Campus Rottal-Inn

    Zeitschriftenartikel

    M. Steffens, B. Becker, C. Neumann, Anna-Maria Kasparbauer, I. Meyhöfer, B. Weber, M. Mehta, R. Hurlemann, U. Ettinger

    Effects of Ketamine on Brain Function During Smooth Pursuit Eye Movements

    Human Brain Mapping, vol. 37, no. 11, pp. 4047-4060

    2016

    DOI: 10.1002/hbm.23294

    Abstract anzeigen

    The uncompetitive NMDA receptor antagonist ketamine has been proposed to model symptoms of psychosis. Smooth pursuit eye movements (SPEM) are an established biomarker of schizophrenia. SPEM performance has been shown to be impaired in the schizophrenia spectrum and during ketamine administration in healthy volunteers. However, the neural mechanisms mediating SPEM impairments during ketamine administration are unknown. In a counter‐balanced, placebo‐controlled, double‐blind, within‐subjects design, 27 healthy participants received intravenous racemic ketamine (100 ng/mL target plasma concentration) on one of two assessment days and placebo (intravenous saline) on the other. Participants performed a block‐design SPEM task during functional magnetic resonance imaging (fMRI) at 3 Tesla field strength. Self‐ratings of psychosis‐like experiences were obtained using the Psychotomimetic States Inventory (PSI). Ketamine administration induced psychosis‐like symptoms, during ketamine infusion, participants showed increased ratings on the PSI dimensions cognitive disorganization, delusional thinking, perceptual distortion and mania. Ketamine led to robust deficits in SPEM performance, which were accompanied by reduced blood oxygen level dependent (BOLD) signal in the SPEM network including primary visual cortex, area V5 and the right frontal eye field (FEF), compared to placebo. A measure of connectivity with V5 and FEF as seed regions, however, was not significantly affected by ketamine. These results are similar to the deviations found in schizophrenia patients. Our findings support the role of glutamate dysfunction in impaired smooth pursuit performance and the use of ketamine as a pharmacological model of psychosis, especially when combined with oculomotor biomarkers.

    GesundF: Europan Campus Rottal-Inn

    Zeitschriftenartikel

    Anna-Maria Kasparbauer, I. Meyhöfer, M. Steffens, B. Weber, M. Aydine, V. Kumari, R. Hurlemann, U. Ettinger

    Neural Effects of Methylphenidate and Nicotine During Smooth Pursuit Eye Movements

    NeuroImage, vol. 141, no. November, pp. 52-59

    2016

    DOI: 10.1016/j.neuroimage.2016.07.012

    Abstract anzeigen

    Introduction Nicotine and methylphenidate are putative cognitive enhancers in healthy and patient populations. Although they stimulate different neurotransmitter systems, they have been shown to enhance performance on overlapping measures of attention. So far, there has been no direct comparison of the effects of these two stimulants on behavioural performance or brain function in healthy humans. Here, we directly compare the two compounds using a well-established oculomotor biomarker in order to explore common and distinct behavioural and neural effects. Methods Eighty-two healthy male non-smokers performed a smooth pursuit eye movement task while lying in an fMRI scanner. In a between-subjects, double-blind design, subjects either received placebo (placebo patch and capsule), nicotine (7 mg nicotine patch and placebo capsule), or methylphenidate (placebo patch and 40 mg methylphenidate capsule). Results There were no significant drug effects on behavioural measures. At the neural level, methylphenidate elicited higher activation in left frontal eye field compared to nicotine, with an intermediate response under placebo. Discussion The reduced activation of task-related regions under nicotine could be associated with more efficient neural processing, while increased hemodynamic response under methylphenidate is interpretable as enhanced processing of task-relevant networks. Together, these findings suggest dissociable neural effects of these putative cognitive enhancers.

    GesundF: Europan Campus Rottal-Inn

    Zeitschriftenartikel

    T. Talanow, Anna-Maria Kasparbauer, M. Steffens, I. Meyhöfer, B. Weber, N. Smyrnis, U. Ettinger

    Facing Competition: Neural Mechanisms Underlying Parallel Programming of Antisaccades and Prosaccades

    Brain and Cognition, vol. 107, no. August, pp. 37-47

    2016

    DOI: 10.1016/j.bandc.2016.05.006

    Abstract anzeigen

    The antisaccade task is a prominent tool to investigate the response inhibition component of cognitive control. Recent theoretical accounts explain performance in terms of parallel programming of exogenous and endogenous saccades, linked to the horse race metaphor. Previous studies have tested the hypothesis of competing saccade signals at the behavioral level by selectively slowing the programming of endogenous or exogenous processes e.g. by manipulating the probability of antisaccades in an experimental block. To gain a better understanding of inhibitory control processes in parallel saccade programming, we analyzed task-related eye movements and blood oxygenation level dependent (BOLD) responses obtained using functional magnetic resonance imaging (fMRI) at 3T from 16 healthy participants in a mixed antisaccade and prosaccade task. The frequency of antisaccade trials was manipulated across blocks of high (75%) and low (25%) antisaccade frequency. In blocks with high antisaccade frequency, antisaccade latencies were shorter and error rates lower whilst prosaccade latencies were longer and error rates were higher. At the level of BOLD, activations in the task-related saccade network (left inferior parietal lobe, right inferior parietal sulcus, left precentral gyrus reaching into left middle frontal gyrus and inferior frontal junction) and deactivations in components of the default mode network (bilateral temporal cortex, ventromedial prefrontal cortex) compensated increased cognitive control demands. These findings illustrate context dependent mechanisms underlying the coordination of competing decision signals in volitional gaze control.

    DigitalF: Maschinenbau und MechatronikI: Fraunhofer AWZ CTMT

    Zeitschriftenartikel

    A. Detterbeck, M. Hofmeister, D. Haddad, D. Weber, M. Schmid, A. Hölzing, S. Zabler, E. Hofmann, K.-H. Hiller, P. Jakob, J. Engel, Jochen Hiller, U. Hirschenfelder

    Determination of the mesio-distal tooth width via 3D imaging techniques with and without ionizing radiation: CBCT, MSCT, and μCT versus MRI

    European Journal of Orthodontics, vol. 39, no. 3, pp. 310-319

    2016

    DOI: 10.1093/ejo/cjw047

    Abstract anzeigen

    Objective: The purpose of this study was to estimate the feasibility and accuracy of mesio-distal width measurements with magnetic resonance imaging (MRI) in comparison to conventional 3D imaging techniques [multi-slice CT (MSCT), cone-beam CT (CBCT), and µCT]. The measured values of the tooth widths were compared to each other to estimate the amount of radiation necessary to enable orthodontic diagnostics. Material and Methods: Two pig skulls were measured with MSCT, CBCT, µCT, and MRI. Three different judges were asked to determine the mesio-distal tooth width of 14 teeth in 2D tomographic images and in 3D segmented images via a virtual ruler in every imaging dataset. Results: Approximately 19% (27/140) of all test points in 2D tomographic slice images and 12% (17/140) of the test points in 3D segmented images showed a significant difference (P ≤ 0.05). The largest significant difference was 1.6mm (P < 0.001). There were fewer significant differences in the measurement of the tooth germs than in erupted teeth. Conclusions: Measurement of tooth width by MRI seems to be clinically equivalent to the conventional techniques (CBCT and MSCT). Tooth germs are better illustrated than erupted teeth on MRI. Three-dimensional segmented images offer only a slight advantage over 2D tomographic slice images. MRI, which avoids radiation, is particularly appealing in adolescents if these data can be corroborated in further studies.

    GesundF: Europan Campus Rottal-Inn

    Zeitschriftenartikel

    I. Meyhöfer, M. Steffens, Anna-Maria Kasparbauer, P. Grant, B. Weber, U. Ettinger

    Neural Mechanisms of Smooth Pursuit Eye Movements in Schizotypy

    Human Brain Mapping, vol. 36, no. 1, pp. 340-353

    2015

    DOI: 10.1002/hbm.22632

    Abstract anzeigen

    Patients with schizophrenia as well as individuals with high levels of schizotypy are known to have deficits in smooth pursuit eye movements (SPEM). Here, we investigated, for the first time, the neural mechanisms underlying SPEM performance in high schizotypy. Thirty‐one healthy participants [N  = 19 low schizotypes, N  = 12 high schizotypes (HS)] underwent functional magnetic resonance imaging at 3T with concurrent oculographic recording while performing a SPEM task with sinusoidal stimuli at two velocities (0.2 and 0.4 Hz). Behaviorally, a significant interaction between schizotypy group and velocity was found for frequency of saccades during SPEM, indicating impairments in HS in the slow but not the fast condition. On the neural level, HS demonstrated lower brain activation in different regions of the occipital lobe known to be associated with early sensory and attentional processing and motion perception (V3A, middle occipital gyrus, and fusiform gyrus). This group difference in neural activation was independent of target velocity. Together, these findings replicate the observation of altered pursuit performance in highly schizotypal individuals and, for the first time, identify brain activation patterns accompanying these performance changes. These posterior activation differences are compatible with evidence of motion processing deficits from the schizophrenia literature and, therefore, suggest overlap between schizotypy and schizophrenia both on cognitive‐perceptual and neurophysiological levels. However, deficits in frontal motor areas observed during pursuit in schizophrenia were not seen here, suggesting the operation of additional genetic and/or illness‐related influences in the clinical disorder.

    S: TC Freyung

    Buch (Monographie)

    M. Baatz, U. Benz, S. Dehghani, M. Heynen, A. Höltje, Peter Hofmann, I. Lingenfelder, M. Mimler, M. Sohlbach, M. Weber

    eCognition professional user guide 4

    2004

    S: TC Freyung

    Buch (Monographie)

    M. Baatz, M. Heynen, Peter Hofmann, I. Lingenfelder, M. Mimier, A. Schape, M. Weber, G. Willhauck

    eCognition User Guide 2.0: Object oriented image analysis

    2001