Publikationen


Suche nach „[M.] [Trageser]“ hat 2 Publikationen gefunden
Suchergebnis als PDF
    DigitalNachhaltigF: Europan Campus Rottal-Inn

    Zeitschriftenartikel

    C. Müller, T. Falke, A. Hoffrichter, L. Wyrwoll, C. Schmitt, M. Trageser, A. Schnettler, M. Metzger, Matthias Huber, M. Küppers, D. Most, S. Paulus, H. Heger

    Integrated Planning and Evaluation of Multi-Modal Energy Systems for Decarbonization of Germany

    Energy Procedia, vol. 158, no. February, pp. 3482-3487

    2019

    DOI: 10.1016/j.egypro.2019.01.923

    Abstract anzeigen

    For a successful realization of the energy transition and a reduction of greenhouse gas emissions, an integrated view of multiple energy sectors (electricity, heat and mobility) is necessary. The coupling of different energy sectors is seen as an option to achieve the climate goals in a cost-effective way. In this paper, a methodical approach for multi-modal energy system planning and technology impact evaluation is presented. A key feature of the model is a coupled consideration of sectors electricity, heat and mobility. Energy demands, conversion and storage technologies in households, the Commerce, Trade and Services (CTS) area and the industry are modelled employing a bottom-up modelling approach. The model can be used for the calculation of a detailed transition pathway of energy systems taking into account politically defined climate goals. Based on these calculations, in-depth analyses of energy markets as well as transmission and distribution grids can be performed.

    DigitalNachhaltigF: Europan Campus Rottal-Inn

    Zeitschriftenartikel

    C. Müller, A. Hoffrichter, L. Wyrwoll, C. Schmitt, M. Trageser, T. Kulms, D. Beulertz, M. Metzger, M. Durckheim, Matthias Huber, M. Küppers, D. Most, S. Paulus, H. Heber, A. Schnettler

    Modeling framework for planning and operation of multi-modal energy systems in the case of Germany

    Applied Energy, vol. 250, no. 15 September 2019, pp. 1132-1146

    2019

    DOI: 10.1016/j.apenergy.2019.05.094

    Abstract anzeigen

    In order to reach the goals of the United Nations Framework Convention on Climate Change, a stepwise reduction of energy related greenhouse gas emissions as well as an increase in the share of renewable energies is necessary. For a successful realization of these changes in energy supply, an integrated view of multiple energy sectors is necessary. The coupling of different energy sectors is seen as an option to achieve the climate goals in a cost-effective way. In this paper, a methodical approach for multi-modal energy system planning and technology impact evaluation is presented. A key feature of the model is a coupled consideration of the sectors electricity, heat, fuel and mobility. The modeling framework enables system planners to optimally plan future investments in a detailed transition pathway of the energy system of a country, considering politically defined climate goals. Based on these calculations, in-depth analyses of energy markets as well as electrical transmission and distribution grids can be performed using the presented optimization models. Energy demands, conversion and storage technologies in households, the Commerce, Trade and Services (CTS) area and the industry are modeled employing a bottom-up modeling approach. The results for the optimal planning of the German energy system until 2050 show that the combination of an increased share of renewable energies and the direct electrification of heat and mobility sectors together with the use of synthetic fuels are the main drivers to achieve the climate goals in a cost-efficient way.