Suche nach „[M.] [Pellegrini]“ hat 1 Publikationen gefunden
Suchergebnis als PDF
    NachhaltigF: Angewandte Naturwissenschaften und WirtschaftsingenieurwesenF: Europan Campus Rottal-Inn


    Rui Li, M. Pellegrini, H. Ninokata, M. Mori

    A numerical study on turbulence attenuation model for liquid droplet impingement erosion

    Annals of Nuclear Energy, vol. 38, no. 6, pp. 1279-1287


    DOI: 10.1016/j.anucene.2011.02.010

    Abstract anzeigen

    The bent pipe wall thinning has been often found at the elbow of the drain line and the high-pressure secondary feed-water bent pipe in the nuclear reactors. The liquid droplet impingement (LDI) erosion could be regarded to be one of the major causes and is a significant issue of the thermal hydraulics and structural integrity in aging and life extension for nuclear power plants safety. In this paper two-phase numerical simulations are conducted for standard elbow geometry, typically the pipe diameter is 170 mm. The turbulence attenuation in vapor-droplets flow is analysed by a damping function on the energy spectrum basis of single phase flow. Considering the vapor turbulent kinetic energy attenuation due to the involved droplets, a computational fluid dynamic (CFD) tool has been adopted by using two-way vapor-droplet coupled system. This computational fluid model is built up by incompressible Reynolds Averaged Navier–Stoke equations using standard k–ε model and the SIMPLE algorithm, and the numerical droplet model adopts the Lagrangian approach, a general LDI erosion prediction procedure for bent pipe geometry has been performed to supplement the CFD code. The liquid droplets diameter, velocity, volume concentration are evaluated for the effects of carrier turbulence attenuation. The result shows that carrier turbulence kinetic energy attenuation is proved to be an important effect for LDI erosion rate when investigating the bent pipe wall thinning phenomena.