Suche nach „[M.] [Maisl]“ hat 3 Publikationen gefunden
Suchergebnis als PDF
    DigitalF: Maschinenbau und MechatronikI: Fraunhofer AWZ CTMT


    S. Zabler, M. Maisl, Peter Hornberger, Jochen Hiller, C. Fella, R. Hanke

    X-ray imaging and computed tomography for engineering applications

    tm - Technisches Messen, vol. 87, no. Online veröffentlicht: 08.04.2020


    DOI: 10.1515/teme-2019-0151

    Abstract anzeigen

    After an incremental development which took place over four decades, X-ray imaging has become an important tool for non-destructive testing and evaluation. Computed Tomography (CT) in particular beholds the power of determining the location of flaws and inclusions (e. g. in castings and composites) in three-dimensional object coordinates. Therefore, and thanks to a speed-up of the measurement, CT is now routinely considered for in-line inspection of electronics, castings and composites. When precision and not speed is important, Micro-CT (μCT) can be employed for Dimensional Measurements (DM, e. g. quality assurance and shape verification), as well as for in situ testing, and for characterizing micro-structures in metals and composites. Using appropriate image processing and analysis μCT can determine the local fibre orientation in composites, the granular morphology of battery cathodes or the inter-connectivity of certain phases in casting alloys. Today, the large variety of X-ray instruments and methods poses an application problem which requires experience and a lot of knowledge for deciding which technique applies best to the task at hand. Application-specific guidelines exist for X-ray radiography testing (RT) only, whereas standardization has been applied to CT, unfortunately leaving out high resolution subμ CT, and nano-CT. For the latter exist an equally high number of NDT applications, however these instruments still necessitate a profound expertise. The task is to identify key industrial applications and push CT from system standardization to application specific automation.

    F: Maschinenbau und MechatronikI: Fraunhofer AWZ CTMT


    Jochen Hiller, M. Maisl, L. Reindl

    Physical characterization and performance evaluation of an x-ray micro-computed tomography system for dimensional metrology applications

    Measurement Science and Technology, vol. 23, no. 8


    DOI: 10.1088/0957-0233/23/8/085404

    Abstract anzeigen

    This paper presents physical and metrological characterization measurements conducted for an industrial x-ray micro-computed tomography (CT) system. As is well known in CT metrology, many factors, e.g., in the scanning and reconstruction process, the image processing, and the 3D data evaluation, influence the dimensional measurement properties of the system as a whole. Therefore, it is important to know what leads to, and what are the consequences of, e.g., a geometrical misalignment of the scanner system, image unsharpness (blurring), or noise or image artefacts. In our study, the two main components of a CT scanner, i.e. the x-ray tube and the flat-panel detector, are characterized. The contrast and noise transfer property of the scanner is obtained using image-processing methods based on linear systems theory. A long-term temperature measurement in the scanner cabinet has been carried out. The dimensional measurement property has been quantified by using a calibrated ball-bar and uncertainty budgeting. Information about the performance of a CT scanner system in terms of contrast and noise transmission and sources of geometrical errors will help plan CT scans more efficiently. In particular, it will minimize the user's influence by a systematic line of action, taking into account the physical and technical limitations and influences on dimensional measurements.

    F: Maschinenbau und MechatronikI: Fraunhofer AWZ CTMT

    Beitrag (Sammelband oder Tagungsband)

    Jochen Hiller, R. Hanke, M. Maisl, A. Weckenmann, P. Krämer

    Computed Tomography - A new oppurtunity to measure complete volumes

    Proceedings of NCSL International Workshop and Symposium (Orlando, FL, USA)