Suche nach „[L.] [Guo]“ hat 2 Publikationen gefunden
Suchergebnis als PDF
    NachhaltigF: Angewandte Naturwissenschaften und WirtschaftsingenieurwesenF: Europan Campus Rottal-Inn


    X.-N. Chen, Rui Li, F. Belloni, F. Gabrielli, A. Rineiski, L. Andriolo, L. Guo, D. Castelliti, M. Schyns, E. Bubelis, G. Bandini, M. Sarotto

    Safety studies for the MYRRHA critical core with the SIMMER-III code

    Annals of Nuclear Energy, vol. 110, pp. 1030-1042


    DOI: 10.1016/j.anucene.2017.08.021

    Abstract anzeigen

    The presented studies are carried out within the European 7th framework project MAXSIMA, in which the MYRRHA reactor, which stands for Multi-purpose hYbrid Research Reactor for High-tech Applications, developed at SCK-CEN (Belgian Nuclear Research Centre), is investigated. The SIMMER code is employed for severe accident investigations of the reactor at KIT and SCK-CEN in both critical and ADS subcritical modes. In this paper only studies for the critical core are presented. The SIMMER-III model has been set up and assessed first for the neutronic feedback coefficients. Its calculated fuel, coolant and structure feedbacks agree well with the results evaluated by means of the European Reactor ANalysis Optimized System (ERANOS). For benchmarking of the SIMMER-III coupled neutronics and fluid-dynamics model, several Unprotected Transients due to Over Power (UTOP) have been calculated and compared with results of transient system codes. Very good agreement is demonstrated. In case of the largest and quickest reactivity insertion under hypothetical accident conditions, the reactor is assumed to turn for a short time into a slightly prompt supercritical state, but a quite mild power excursion takes place. Blockage accidents are studied in detail with SIMMER only. In total three scenarios have been investigated, namely the blockages of a single fuel assembly (FA), the protected core blockage scenario and the damage propagation of defective pin failures. Our studies demonstrated no core damage propagation can possibly occur under the different blockage scenarios.

    NachhaltigF: Angewandte Naturwissenschaften und WirtschaftsingenieurwesenF: Europan Campus Rottal-Inn


    L. Guo, Rui Li, S. Wang, M. Flad, W. Maschek, A. Rineiski

    Numerical investigation of SIMMER code for fuel-coolant interaction

    International Journal of Hydrogen Energy, vol. 41, no. 17, pp. 7227-7232


    DOI: 10.1016/j.ijhydene.2016.01.080

    Abstract anzeigen

    Fuel-coolant interaction (FCI) is a very complex but important issue in the safety analysis of the severe accidents for nuclear reactors due to the rapid multiple thermos–hydrodynamic activities. Until now, there are still large uncertainties existing in various phases during the FCI process, such as the melt solidification, fragmentation and relocation, film boiling on the melt surface, coolant vaporization and following vapor explosion, and so on. SIMMER-III code was first developed to analyses core disruptive accidents in liquid-metal fast reactors (LMFRs) as an integral numerical tool coupling multiphase thermal hydraulic code with neutron kinetics model, and was demonstrated its reasonable flexibility in some FCI simulations. In this paper, the applicability of the code in simulating the premixing phase of FCI process is verified in comparison with a related jet-type experiment in literature. In addition, the sensitivity analysis on several key parameters of the related models in the SIMMER code was performed to assess the impacts in the simulation of the FCI premix phase. It is expected that the results can provide some numerical experience for the uncertainty analysis of FCI calculation using SIMMER-III code.