Suche nach „[J.] [Xu]“ hat 1 Publikationen gefunden
Suchergebnis als PDF
    F: Elektrotechnik und MedientechnikI: IQMA


    D. Liu, J. Zhang, Y. Liu, J. Xu, Günther Benstetter

    Growth processes and surface properties of diamondlike carbon films

    Journal of Applied Physics, vol. 97


    DOI: 10.1063/1.1890446

    Abstract anzeigen

    In this study, we compare the deposition processes and surface properties of tetrahedral amorphous carbon (ta-C) films from filtered pulsed cathodic arc discharge (PCAD) and hydrogenated amorphous carbon (a-C:H) films from electron cyclotron resonance (ECR)-plasma source ion implantation. The ion energy distributions (IEDs) of filtered-PCAD at various filter inductances and Ar gas pressures were measured using an ion energy analyzer. The IEDs of the carbon species in the absence of background gas and at low gas pressures are well fitted by shifted Maxwellian distributions. Film hardness and surface properties show a clear dependence on the IEDs. ta-C films with surface roughness at an atomic level and thin (0.3–0.9 nm) graphitelike layers at the filmsurfaces were deposited at various filter inductances in the highly ionized plasmas with the full width at half maximum ion energy distributions of 9–16 eV. The a-C:H filmsdeposited at higher H/C ratios of reactive gases were covered with hydrogen and sp3 bonded carbon-enriched layers due to the simultaneous interaction of hydrocarbon species and atomic hydrogen. The effects of deposited species and ion energies on filmsurface properties were analyzed. Some carbon species have insufficient energies to break the delocalized π(nC)bonds at the graphitelike filmsurface, and they can govern filmformation via surface diffusion and coalescence of nuclei. Dangling bonds created by atomic hydrogen lead to uniform chemisorption of hydrocarbon species from the ECR plasmas. The deposition processes of ta-C and a-C:H films are discussed on the basis of the experimental results.