Publikationen


Suche nach „[J.] [Ding]“ hat 2 Publikationen gefunden
Suchergebnis als PDF
    Elektrotechnik und MedientechnikIQMA

    Zeitschriftenartikel

    J. Niu, H.-X. Ding, Y. Cong, N. Yu, Günther Benstetter, D. Liu

    Plasma-assisted chemical vapor deposition of titanium oxide films by dielectric barrier discharge

    Submitted Article

    Thin Solid Films

    2010

    Elektrotechnik und MedientechnikIQMA

    Zeitschriftenartikel

    D. Liu, Günther Benstetter, Edgar Lodermeier, X. Chen, J. Ding, Y. Liu, J. Zhang, T. Ma

    Surface and structural properties of ultrathin diamond-like carbon coatings

    Diamond and Related Materials, vol. 12, pp. 1594-1600

    2003

    DOI: 10.1016/S0925-9635(03)00248-6

    Abstract anzeigen

    Nanoscale wear resistance, friction, and electrical conduction tests using atomic force microscope (AFM) have been conducted on ultrathin diamond-like carbon (DLC) coatings, including tetrahedral amorphous carbon (ta-C) deposited using pulsed cathodic arc (PCA) and filtered-PCA, and hydrogenated amorphous carbon (a-C:H) deposited using electron cyclotron resonance—chemical vapor deposition (ECR-CVD). The low-resistant layers at the surfaces of these thin DLC coatings were revealed by AFM-based nanowear tests. Their thickness is mainly determined by the deposition methods and does not show an obvious variation with the coating thickness decreasing from tens of nm to a few nm. The ∼3 nm ta-C coatings from PCA and filtered-PCA deposition were found to have the stable bulk structure beneath the thin (0.3–0.95 nm) surface layers. The ∼3 nm a-C:H coating from ECR-CVD had the extremely low load-carrying capacity and exhibited the evidence of coating delamination, which can be related to the thicker (1.5±0.1 nm) soft surface layers of a-C:H coatings. The results from conducting-AFM measurements indicate that a-C:H coatings have H and sp3 C enrichment surface layers while the soft surface layers of ta-C coatings have graphite-like structure. The nanoscale friction coefficients of these thin ta-C and a-C:H coatings were compared by AFM-based lateral force microscope. The lower friction coefficient of ta-C coatings can be attributed to the existence of graphite-like surface structure.