Publikationen


Suche nach „[J.] [Bai]“ hat 1 Publikationen gefunden
Suchergebnis als PDF
    Angewandte Naturwissenschaften und Wirtschaftsingenieurwesen

    Zeitschriftenartikel

    L. Li, J. Bai, J. Sun, Thomas Stirner, D. Wang

    Particle simulation of the nonlinear oscillation of electrons induced by a nanosecond pulse in rf capacitive hydrogen discharges

    Physics of Plasmas, vol. 19, no. 3

    2012

    DOI: 10.1063/1.3695121

    Abstract anzeigen

    A particle-in-cell simulation was employed to investigate the nature and physical cause of the nonlinear oscillation of electrons induced by a nanosecond pulse in rf capacitive hydrogen discharges. It was found that the applied nanosecond pulse converted the plasma quickly from the bi-Maxwellian equilibrium formed in the rf capacitive discharge into another temporal bi-Maxwellian equilibrium. When the applied electric field collapses within a few nanoseconds, the electric field arising from the space charge serves as a restoring force to generate a swift oscillation of the electrons. The energy stored in the plasma is converted gradually into the chemical energy during the electron periodic movement. It is also found that the rise-, plateau-, and fall-times of the applied pulse affect the evolution of the electron energy distribution. The collective electron oscillation has a repetition frequency approximately equal to the electron plasma frequency, independent of pulse rise-, plateau-, and fall-times. This oscillation of electrons induced by a nanosecond pulse can be used to generate highly excited vibrational states of hydrogen molecules, which are a necessary precursor for negative hydrogen ions.