Suche nach „[H.-W.] [Neumüller]“ hat 2 Publikationen gefunden
Suchergebnis als PDF
    F: Elektrotechnik und Medientechnik


    M. Leghissa, B. Gromoll, J. Rieger, M. Oomen, H.-W. Neumüller, Reinhard Schlosser, H. Schmidt, W. Knorr, M. Meinert, U. Henning

    Development and Application of Superconducting Transformers

    Physica C: Superconductivity and its Applications, vol. 372-376, no. Part 3, pp. 1688-1693


    DOI: 10.1016/S0921-4534(02)01102-4

    Abstract anzeigen

    Superconducting transformers are an important innovation for future power transmission and transportation systems. Powerful, lightweight, energy-saving and environmentally friendly they offer enormous benefits compared to their conventional counterparts. Siemens is developing a 1-MVA demonstrator transformer for laboratory testing, exhibiting innovative features like horizontal design, cabled-conductor windings and a closed cooling cycle with sub-cooled nitrogen. Being one of the most promising applications Siemens has started a programme towards the development of on-board transformers for electrical rail vehicles. This paper summarises world-wide efforts in the development of superconducting transformers and reports on the progress achieved at Siemens.

    F: Elektrotechnik und Medientechnik


    P. Kummeth, Reinhard Schlosser, P. Massek, H. Schmidt, C. Albrecht, D. Breitfelder, H.-W. Neumüller

    Development and test of a 100 kVA superconducting transformer operated at 77 K

    Superconductor Science and Technology, vol. 13, no. 5, pp. 503-505


    DOI: 10.1088/0953-2048/13/5/314

    Abstract anzeigen

    High-temperature superconducting (HTS) transformers are very promising candidates for application in electrical power engineering. Their main advantages are reduced size, weight, better efficiency and reduced potential fire and environmental hazards. We have designed, constructed and tested a 100 kVA HTS power transformer operated at 77 K. The nominal primary and secondary currents (voltages) are 18 A (5.6 kV) and 92 A (1.1 kV), respectively. No-load tests, short-circuit tests and load tests proved repeatedly that the transformer has the rated capacity. HTS winding losses of 20.6 W and iron losses of 403 W were measured.