NachhaltigAngewandte Naturwissenschaften und WirtschaftsingenieurwesenZeitschriftenartikel
A. Hamid, J. Sun, H. Zhang, Thomas Stirner
Molecular dynamics simulation analysis of helium cluster growth conditions under tungsten surfaces
Computational Materials Science, vol. 186, no. January
DOI: 10.1016/j.commatsci.2020.109994
Abstract anzeigen
Molecular dynamics simulations have been performed to study the effects of helium fluxes on helium cluster size underneath tungsten surfaces under bombardment of helium atoms with incident energy 30 100 eV at temperature 300 2100 K. The simulation results show that the helium cluster size depends on the magnitude of the helium flux: at a higher flux, the helium clusters on average form in smaller size in tungsten but with larger number; while the clusters form further away from the surface at a lower flux. The coalescence of He atoms and helium bubbles depends on the tungsten temperature: at elevated temperatures around 2000 K, the incident He atoms in tungsten slow down more rapidly than at 1000 K but the number of vacancies per He cluster is smaller. The incident energy has a strong effect on the retention of helium atoms: The helium retention rate increases with the incident energy, and the helium retention depends weakly on temperature in the low energy range of interest. It is also found that the surface orientation plays an important role not only in determining the depth distribution but also in determining the helium retention and cluster size: at the surface {1 1 0}, the retention rate of helium atoms is the lowest, and at the surface {1 1 1}, the clusters grow easily in the lateral direction. The present simulation results suggest that the {0 0 1} surface is favorable for fuzz growth. The results obtained in the present work provide insight to the reasons why the fuzz only grows within a certain parameter range at the atomic level.
NachhaltigAngewandte Naturwissenschaften und WirtschaftsingenieurwesenZeitschriftenartikel
H. Zhang, J. Sun, Y. Wang, Thomas Stirner, A. Hamid, C. Sang
Study of lattice thermal conductivity of tungsten containing bubbles by molecular dynamics simulation
Fusion Engineering and Design, vol. 161, no. December
DOI: 10.1016/j.fusengdes.2020.112004
Abstract anzeigen
Exposed to high fluxes of helium/hydrogen isotope particles and heat, tungsten divertor plates will suffer damage thus degrading its performance such as its thermal conductivity. This paper presents a study on the effect of bubbles on the lattice thermal conductivity of tungsten at the atomic level using molecular dynamics simulations. The present study finds that empty bubbles in tungsten lead to a decrease in the lattice thermal conductivity of tungsten. Furthermore, He/D filled bubbles aggravate this decrease. The physical origin of this behavior is discussed. It is also found that the decrease in lattice thermal conductivity depends strongly on both the impurity density in the bubbles and the bubble size.
NachhaltigElektrotechnik und MedientechnikIQMAZeitschriftenartikel
H. Fan, Y. Zhang, D. Liu, C. Niu, L. Liu, W. Ni, Y. Xia, Z. Bi, Günther Benstetter, G. Lei
Tensile stress-driven cracking of W fuzz over W crystal under fusion-relevant He ion irradiations
Nuclear Fusion, vol. 60, no. 4
DOI: 10.1088/1741-4326/ab71bb
Abstract anzeigen
Although W fuzz is formed in the divertor region of the fusion reactor, no theory may clearly explain the W fuzz growth mechanism. In this study, we observe the growth process of W fuzz over W crystal under ITER-relevant He ion irradiations. We propose the tensile stress-driven cracking of nano-structured fuzz during the initial growth of W fuzz. We demonstrate that the existence of tensile stress is due to the swelling of He nano-bubbles in the fuzz. After this cracking, the W fuzz breaks away from the planar network and grows over the W surface, where the micro-stress in the W surface layer acts as the driving force.
NachhaltigElektrotechnik und MedientechnikIQMAZeitschriftenartikel
Z. Bi, D. Liu, Y. Zhang, L. Liu, Y. Xia, Y. Hong, H. Fan, Günther Benstetter, G. Lei, L. Yan
The evolution of He nanobubbles in tungsten under fusion-relevant He ion irradiation conditions
Nuclear Fusion, vol. 59, no. 8
DOI: 10.1088/1741-4326/ab2472
Abstract anzeigen
He-induced W nanofuzz growth over the W divertor target is one of the main limiting factors affecting the current design and development of fusion reactors. In this paper, based on He reaction rate model in W, we simulate the growth and evolution of He nanobubbles during W nanofuzz formation under fusion-relevant He+ irradiation conditions. Our modeling unveils the existence of He nanobubble-enriched W surface layer (<10 nm), formed due to the He diffusion in W crystal into defect sites. At an elevated temperature, the growth of He bubbles in the W surface layer prevents He atoms diffusing into the deep layer (>10 nm). The formation of W nanofuzz at the surface is attributed to surface bursting of high-density He bubbles with their radius of ~4 nm, and an increase in the surface area of irradiated W. Our findings have been well confirmed by the experimental measurements.
NachhaltigElektrotechnik und MedientechnikIQMAZeitschriftenartikel
W. Ni, L. Liu, Y. Zhang, C. Niu, H. Fan, G. Song, D. Liu, Günther Benstetter, G. Lei
Effect of intermittent He/D ion irradiations on W nano-fuzz growth over W targets
Vacuum, vol. 173, no. March
DOI: 10.1016/j.vacuum.2019.109146
Abstract anzeigen
The intermittent He/D ion irradiations of polycrystalline W have been performed at the ion energy of 50 eV by changing the time of the single irradiations and the irradiation temperature. All irradiated W specimens have been observed by scanning electron microscopy, and the effect of intermittent He/D ion irradiations on the W fuzz growth has been analyzed. The W fuzz growth over W targets does not show the clear dependence on the intermittent He/D ion irradiations, where the He/D ion fluence of the single irradiations typically varies from 5.0 × 1024 to 2.5 × 1025/m2. However, a slight change in the W surface temperature during the single He ion irradiations significantly affects the W fuzz growth rate. Analysis indicates that W fuzz growth is significantly affected by the total He ion fluence varying from 5.0 × 1024 to 5.0 × 1025/m2 and the irradiation temperature varying from 1100 to 1450 K. This current study will play a crucial role in understanding the W fuzz growth under the periodic He/D ion irradiations of W divertor in fusion reactors, such as ELMs.
NachhaltigElektrotechnik und MedientechnikIQMAZeitschriftenartikel
W. Ni, L. Liu, Y. Zhang, H. Fan, G. Song, D. Liu, Günther Benstetter, G. Lei
Mass loss of pure W, W-Re alloys, and oxide dispersed W under ITER-relevant He ion irradiations
Journal of Nuclear Materials, vol. 527
DOI: 10.1016/j.jnucmat.2019.151800
Abstract anzeigen
In this study, polycrystalline W, W-Re alloys, and La2O3 and Y2O3 dispersion-strengthened W have been irradiated by our large-power materials irradiation experimental system (LP-MIES) at the irradiation temperature of 1360–1460 K. Our measurements show that the W nano-fuzz layer which is < 5.2 μm thick has been formed over all the specimens exposed to the low-energy (50 or 100 eV) and high-flux (1.37 × 1022–1.62 × 1022 ions/m2⋅s) He+ irradiations. The mass loss of the fuzz layer almost linearly increases with the He+ fluence, which does not show any dependence on the thickness of fuzz layer varying from 1.1 to 5.2 μm La2O3 and Y2O3 dispersions into W significantly suppress the growth of W fuzz, indicating that He diffusion and the evolution of He nano-bubbles in the near-surface can be significantly influenced due to the dispersion. After He+ (100 eV) irradiation at He+ fluence of 5.83 × 1026/m2, the mass loss of 0.1 vol% - 1.0 vol% La2O3-dispersed W is about 20% lower than the one of the pure W, and the La2O3 dispersed W exhibits the best erosion resistance among various W material grades. Our analysis indicates that both the surface sputtering of W fuzz by energetic ions and surface bursting of He nano-bubbles can be responsible for the mass loss of W under ITER-relevant He+ irradiations.
NachhaltigAngewandte Naturwissenschaften und WirtschaftsingenieurwesenZeitschriftenartikel
Thomas Stirner, Ali Hamid, J. Sun, H. Zhang, A. Jadon
Molecular dynamics simulations of helium clustering and bubble growth under tungsten surfaces
Computational Materials Science, vol. 163, no. June, pp. 141-147
DOI: 10.1016/j.commatsci.2019.03.008
Abstract anzeigen
We study the surface response of W to helium bombardment using molecular dynamics simulations. Simulations have been performed for incident helium of energy 80 eV and surface temperature 2100 K. The saturation of He retention has been observed to be high, a result of the bubbles trapping helium atoms and preventing them from diffusing to the surface and further back into the plasma. On the other hand, we have observe near-surface “cluster rupture” leading to the expulsion of helium atoms towards the vacuum. We have found that bubbles typically grow in a relatively narrow band of He/V ratios (1–3). Besides, it was observed that tungsten atoms migrated from the top surface into the bulk. The coalescence of helium bubbles has also been observed.
NachhaltigElektrotechnik und MedientechnikIQMAZeitschriftenartikel
L. Liu, S. Li, D. Liu, Günther Benstetter, O. Man, J. Michalicka, Y. Zhang, Y. Hong, H. Fan, W. Ni, Q. Yang, Y. Wu, Z. Bi
The effect of O2 impurity on surface morphology of polycrystalline W during low-energy and high-flux He+ irradiation
Fusion Engineering and Design, vol. 139, pp. 96-103
DOI: 10.1016/j.fusengdes.2019.01.003
Abstract anzeigen
The interaction between the impurities (such as carbon, nitrogen, oxygen) and the plasma-facing materials (PFMs) can profoundly influence the performance and service of the PFMs. In this paper, we investigated the influence of oxygen (O2) impurity in the helium radio frequency (RF) plasma on the surface morphology of polycrystalline tungsten (W) irradiated at the surface temperature of 1450 ± 50 K and the ion energy of 100 eV. The pressure ratio of O2 to He (R) in RF source varied from 4.0 × 10−6 to 9.0 × 10-2. The total irradiation flux and fluence were ˜1.2 × 1022 ions·m-2·s-1 and ˜1.0 × 1026 ions·m-2, respectively. After He+ irradiation, the specimen surface morphology was observed by scanning electron microscopy. It was found that with increasing R from 4.0 × 10−6 to 9.0 × 10-2 the thickness of nano-fuzz layer at the W surface was thinner and thinner, accompanied by the formation of rod-like structures. The erosion yield increased from 5.2 × 10-4 to 2.3 × 10-2 W/ion when R varied from 4.0 × 10-6 to 9.0 × 10-2. The X-ray diffraction analysis shows that tungsten oxides were formed at the near surface of specimens when R exceeded 1.8 × 10-2. The erosion yield measurements revealed that in addition to surface physical sputtering process, the chemical erosion process could occur due to the interaction between oxygen-containing species and W at the surface. The results indicated that the presence of O2 impurity in He plasma can obviously affect the surface microstructure of W. The study suggested that O2 impurity can effectively reduce the growth of nano-fuzz structures.
NachhaltigElektrotechnik und MedientechnikIQMAZeitschriftenartikel
L. Liu, S. Li, D. Liu, Günther Benstetter, Y. Zhang, Y. Hong, H. Fan, W. Ni, Q. Yang, Y. Wu, Z. Bi
Surface damages of polycrystalline W and La2O3-doped W induced by high-flux He plasma irradiation
Journal of Nuclear Materials, vol. 501, no. April, pp. 275-281
Abstract anzeigen
In this study, polycrystalline tungsten (W) and three oxide dispersed strengthened W with 0.1 vol %, 1.0 vol % and 5.0 vol % lanthanum trioxide (La2O3) were irradiated with low-energy (200 eV) and high-flux (5.8 × 1021 or 1.4 × 1022 ions/m2⋅s) He+ ions at elevated temperature. After He+ irradiation at a fluence of 3.0 × 1025/m2, their surface damages were observed by scanning electron microscopy, energy dispersive spectroscopy, scanning electron microscopy-electron backscatter diffraction, and conductive atomic force microscopy. Micron-sized holes were formed on the surface of W alloys after He+ irradiation at 1100 K. Analysis shows that the La2O3 grains doped in W were sputtered preferentially by the high-flux He+ ions when compared with the W grains. For irradiation at 1550 K, W nano-fuzz was formed at the surfaces of both polycrystalline W and La2O3-doped W. The thickness of the fuzz layers formed at the surface of La2O3-doped W is 40% lower than the one of polycrystalline W. The presence of La2O3 could suppress the diffusion and coalescence of He atoms inside W, which plays an important role in the growth of nanostructures fuzz.
Zentrum für Akademische WeiterbildungZeitschriftenartikel
A. Al Lily, J. Foland, D. Stoloff, A. Gogus, I. Erguvan, M. Awshar, J. Tondeur, M. Hammond, I. Venter, P. Jerry, A. Oni, Y. Liu, R. Badosek, López de la Madrid, M.C., E. Mazzoni, D. Vlachopoulos, H. Lee, K. Kinley, M. Kalz, U. Sambuu, T. Bushnaq, N. Pinkwart, N. Adedokun-Shittu, P.-O. Zander, K. Oliver, L. Teixeira Pombo, J. Balaban Sali, S. Gregory, S. Tobgay, M. Joy, J. Elen, Odeh Helal Jwaifell, M., M.N.H.M. Said, Y. Al-Saggaf, A. Naaji, J. White, K. Jordan, J. Gerstein, İ. Umit Yapici, C. Sanga, P. Nleya, B. Sbihi, M. Rocha Lucas, V. Mbarika, S. Schön, L. Sujo-Montes, M. Santally, P. Häkkinen, A. Al Saif, Andreas Gegenfurtner, S. Schatz, V. Padilla Vigil, C. Tannahill, S. Padilla Partida, Z. Zhang, K. Charalambous, A. Moreira, M. Coto, et al.
Academic domains as political battlegrounds
A global enquiry by 99 academics in the fields of education and technology
Information Development, vol. 33, no. 3, pp. 270-288
DOI: 10.1177/0266666916646415
Abstract anzeigen
This article theorizes the functional relationship between the human components (i.e., scholars) and non-human components (i.e., structural configurations) of academic domains. It is organized around the following question: in what ways have scholars formed and been formed by the structural configurations of their academic domain? The article uses as a case study the academic domain of education and technology to examine this question. Its authorship approach is innovative, with a worldwide collection of academics (99 authors) collaborating to address the proposed question based on their reflections on daily social and academic practices. This collaboration followed a three-round process of contributions via email. Analysis of these scholars’ reflective accounts was carried out, and a theoretical proposition was established from this analysis. The proposition is of a mutual (yet not necessarily balanced) power (and therefore political) relationship between the human and non-human constituents of an academic realm, with the two shaping one another. One implication of this proposition is that these non-human elements exist as political ‘actors’, just like their human counterparts, having ‘agency’ – which they exercise over humans. This turns academic domains into political (functional or dysfunctional) ‘battlefields’ wherein both humans and non-humans engage in political activities and actions that form the identity of the academic domain.
Elektrotechnik und MedientechnikIQMAZeitschriftenartikel
D. Liu, S. Zhang, S.-E. Ong, Günther Benstetter, H. Du
Surface and electron emission properties of hydrogen-free diamond-like carbon films investigated by atomic force microscopy
Materials Science & Engineering A, vol. 426, no. 1-2, pp. 114-120
Abstract anzeigen
In this study, we have deposited hydrogen-free diamond-like carbon (DLC) films by using DC magnetron sputtering of graphite target at various r.f. bias voltages. Surface and nanoscale emission properties of these DLC films have been investigated using a combination of atomic force microscopy (AFM)-based nanowear tests and conducting-AFM, by simultaneously measuring the topography and the conductivity of the samples. Nanowear tests show that these DLC films are covered with the thin (1.5–2.0 nm) graphite-like layers at surfaces. Compared to the film bulk structure, the graphite-like surface layers are more conductive. The graphite-like surface layers significantly influence the electron emission properties of these films. Low-energy carbon species can be responsible for the formation of graphite-like surface layers. Nanoscale electron emission measurements have revealed the inhomogeneous emission nature of these films. The low-field emission from these films can be attributed to the existence of sp2-configured nanoclusters inside the films.