Suche nach „[F.] [Gabrielli]“ hat 3 Publikationen gefunden
Suchergebnis als PDF
    NachhaltigAngewandte Naturwissenschaften und WirtschaftsingenieurwesenEuropan Campus Rottal-Inn


    A. Rineiski, S. Gianfelici, W. Maschek, B. Vezzoni, Rui Li, C. Matzerath Boccaccini, F. Gabrielli, M. Flad

    Probabilistic evaluation of the energetics upper bound during the transition phase of an unprotected loss of flow accident for a sodium cooled fast reactor by using a Phenomenological Relationship Diagram

    Nuclear Engineering and Design, vol. 341, no. 146-154


    DOI: 10.1016/j.nucengdes.2018.11.004

    Abstract anzeigen

    One of the main research goals of the GEN-IV systems is enhancing their safety compared with the former Sodium-Cooled Fast Reactor (SFR) designs. A key issue is the capability of accidents prevention as well as of demonstrating that their consequences do not violate the safety criteria. In order to fulfill such requirements, risk analyses of severe core disruptive accidents are performed. Since the beginning of the SFR development, Hypothetical Core Disruptive Accidents (HCDAs) have played an outstanding role. Numerous safety analyses have been performed for developing and licensing past SFR designs and nowadays a large database of results is available. In particular, a large amount of results of the mechanistic SIMMER-II and SIMMER-III/IV analyses for various core designs and different power classes is available at the Karlsruhe Institute of Technology (KIT). The current paper describes the probabilistic approach based on the Phenomenological Relationship Diagram (PRD), which is used to evaluate the Probability Distribution Function (PDF) of the thermal energy release during the transition phase of an unprotected loss of flow accident scenario for a SFR. The technique allows taking into account the mechanistic nature of the accident scenario. In fact, the available results of the mechanistic analyses of HCDAs in SFRs are used to assess the PDFs of the dominant phenomena affecting the thermal energy release, which are propagated in the PRD by employing a Monte Carlo method.

    NachhaltigAngewandte Naturwissenschaften und WirtschaftsingenieurwesenEuropan Campus Rottal-Inn


    K. Morita, W. Maschek, Rui Li, C. Matzerath Boccaccini, F. Gabrielli

    Investigation on upper bounds of recriticality energetics of hypothetical core disruptive accidents in sodium cooled fast reactors

    Nuclear Engineering and Design, vol. 326, no. January, pp. 392-402


    DOI: 10.1016/j.nucengdes.2017.11.002

    Abstract anzeigen

    One key research goal for GEN-IV systems is an enhanced safety compared to the former Sodium Cooled Fast Reactor concepts. A key issue is built-in safety and the capability to prevent accidents and to demonstrate that their consequences do not violate aimed-at safety criteria. From the beginning of SFR development the Core Disruptive Accident (CDA) has played an outstanding role in the safety assessment. Under core disruptive accident conditions with core melting the fuel might compact, prompt criticality might be achieved and a severe nuclear power excursion with mechanical energy release might be the consequence. Numerous safety analyses accompanied the development and the licensing procedures of past fast reactor projects. A central issue of all analyses was the assessment of a realistic upper bound of energetics especially related to recriticalities in disrupted core configurations. Striving for an even higher safety level for next generation reactors a new strategy focused on the development and introduction of preventive and mitigative measures both to reduce the chance for a severe accident development and to mitigate its energetics. For assessing the effectiveness of these measures the knowledge of the CDA behavior is essential. In this context and on basis of new code developments, new experimental insights and extended studies for many reactor types of different power classes over the recent years, the issue of a realistic upper bound of energetics of the late core melt phases is again of relevance. Of special interest is the identification of natural and intrinsic mechanisms that limit the escalation of energetics. The current paper deals with these issues and tries to add supportive facts on the limits of CDA energetics. The evaluation of results of mechanistic SIMMER-II and SIMMER-III/IV analyses performed for various core designs and power classes and specific model case studies in 2D and 3D geometry indeed supports the idea of a limit of recriticality energetics. Intrinsic mechanisms exist, which limit the escalation energetics even in case of a strong blockage confinement suppressing any fuel discharge and allowing on-going sloshing recriticalities. In the light of the available information and taking into account relevant scientific publications and studies by the international community on the subject, one could conclude that an upper bound for energetics in the range given in the paper can be deduced.

    NachhaltigAngewandte Naturwissenschaften und WirtschaftsingenieurwesenEuropan Campus Rottal-Inn


    E. Bubelis, D. Castelliti, L. Guo, X.-N. Chen, A. Rineiski, M. Schyns, M. Sarotto, Rui Li, F. Gabrielli, L. Andriolo, G. Bandini, F. Belloni

    Safety studies for the MYRRHA critical core with the SIMMER-III code

    Annals of Nuclear Energy, vol. 110, pp. 1030-1042


    DOI: 10.1016/j.anucene.2017.08.021

    Abstract anzeigen

    The presented studies are carried out within the European 7th framework project MAXSIMA, in which the MYRRHA reactor, which stands for Multi-purpose hYbrid Research Reactor for High-tech Applications, developed at SCK-CEN (Belgian Nuclear Research Centre), is investigated. The SIMMER code is employed for severe accident investigations of the reactor at KIT and SCK-CEN in both critical and ADS subcritical modes. In this paper only studies for the critical core are presented. The SIMMER-III model has been set up and assessed first for the neutronic feedback coefficients. Its calculated fuel, coolant and structure feedbacks agree well with the results evaluated by means of the European Reactor ANalysis Optimized System (ERANOS). For benchmarking of the SIMMER-III coupled neutronics and fluid-dynamics model, several Unprotected Transients due to Over Power (UTOP) have been calculated and compared with results of transient system codes. Very good agreement is demonstrated. In case of the largest and quickest reactivity insertion under hypothetical accident conditions, the reactor is assumed to turn for a short time into a slightly prompt supercritical state, but a quite mild power excursion takes place. Blockage accidents are studied in detail with SIMMER only. In total three scenarios have been investigated, namely the blockages of a single fuel assembly (FA), the protected core blockage scenario and the damage propagation of defective pin failures. Our studies demonstrated no core damage propagation can possibly occur under the different blockage scenarios.