Publikationen


Suche nach „[C.] [Fan]“ hat 5 Publikationen gefunden
Suchergebnis als PDF
    NachhaltigElektrotechnik und MedientechnikIQMA

    Zeitschriftenartikel

    H. Fan, Y. Zhang, D. Liu, C. Niu, L. Liu, W. Ni, Y. Xia, Z. Bi, Günther Benstetter, G. Lei

    Tensile stress-driven cracking of W fuzz over W crystal under fusion-relevant He ion irradiations

    Nuclear Fusion, vol. 60, no. 4

    DOI: 10.1088/1741-4326/ab71bb

    Abstract anzeigen

    Although W fuzz is formed in the divertor region of the fusion reactor, no theory may clearly explain the W fuzz growth mechanism. In this study, we observe the growth process of W fuzz over W crystal under ITER-relevant He ion irradiations. We propose the tensile stress-driven cracking of nano-structured fuzz during the initial growth of W fuzz. We demonstrate that the existence of tensile stress is due to the swelling of He nano-bubbles in the fuzz. After this cracking, the W fuzz breaks away from the planar network and grows over the W surface, where the micro-stress in the W surface layer acts as the driving force.

    NachhaltigElektrotechnik und MedientechnikIQMA

    Zeitschriftenartikel

    W. Ni, L. Liu, Y. Zhang, C. Niu, H. Fan, G. Song, D. Liu, Günther Benstetter, G. Lei

    Effect of intermittent He/D ion irradiations on W nano-fuzz growth over W targets

    Vacuum, vol. 173, no. March

    DOI: 10.1016/j.vacuum.2019.109146

    Abstract anzeigen

    The intermittent He/D ion irradiations of polycrystalline W have been performed at the ion energy of 50 eV by changing the time of the single irradiations and the irradiation temperature. All irradiated W specimens have been observed by scanning electron microscopy, and the effect of intermittent He/D ion irradiations on the W fuzz growth has been analyzed. The W fuzz growth over W targets does not show the clear dependence on the intermittent He/D ion irradiations, where the He/D ion fluence of the single irradiations typically varies from 5.0 × 1024 to 2.5 × 1025/m2. However, a slight change in the W surface temperature during the single He ion irradiations significantly affects the W fuzz growth rate. Analysis indicates that W fuzz growth is significantly affected by the total He ion fluence varying from 5.0 × 1024 to 5.0 × 1025/m2 and the irradiation temperature varying from 1100 to 1450 K. This current study will play a crucial role in understanding the W fuzz growth under the periodic He/D ion irradiations of W divertor in fusion reactors, such as ELMs.

    NachhaltigElektrotechnik und MedientechnikIQMA

    Zeitschriftenartikel

    H. Fan, Y. You, W. Ni, Q. Yang, L. Liu, Günther Benstetter, D. Liu, C. Liu

    Surface degeneration of W crystal irradiated with low-energy hydrogen ions

    Scientific Reports (Nature Publishing Group), vol. 6, no. Article number: 23738

    DOI: 10.1038/srep23738

    Abstract anzeigen

    The damage layer of a W (100) crystal irradiated with 120 eV hydrogen ions at a fluence of up to 1.5 × 1025/m2 was investigated by scanning electron microscopy and conductive atomic force microscopy (CAFM). The periodic surface degeneration of the W crystal at a surface temperature of 373 K was formed at increasing hydrogen fluence. Observations by CCD camera and CAFM indicate the existence of ultrathin surface layers due to low-energy H irradiation. The W surface layer can contain a high density of nanometer-sized defects, resulting in the thermal instability of W atoms in the surface layer. Our findings suggest that the periodic surface degeneration of the W crystal can be ascribed to the lateral erosion of W surface layers falling off during the low-energy hydrogen irradiation. Our density functional theory calculations confirm the thermal instability of W atoms in the top layer, especially if H atoms are adsorbed on the surface.

    NachhaltigElektrotechnik und MedientechnikIQMA

    Zeitschriftenartikel

    Q. Yang, Y.-W. You, L. Liu, H. Fan, W. Ni, D. Liu, C. Liu, Günther Benstetter, Y. Wang

    Nanostructured fuzz growth on tungsten under low-energy and high-flux He irradiation

    Scientific Reports (Nature Publishing Group), vol. 5, no. Article number: 10959, pp. 1-9

    DOI: 10.1038/srep10959

    Hochschulleitung und -einrichtungen

    Beitrag (Sammelband oder Tagungsband)

    Y. Zhao, Peter Sperber, T. Wang, C. Fan, N. Liu, X. Han, Ch. Liu

    Test Report of Clock Distributor in Changchun and Beijing

    Proceedings of the 12th International Workshop on Laser Ranging, Matera, Italien, 16.-20.10.2000