Publikationen


Suche nach „[A.] [Huber]“ hat 15 Publikationen gefunden
Suchergebnis als PDF
    DigitalNachhaltigF: Europan Campus Rottal-Inn

    Zeitschriftenartikel

    M. Metzger, M. Duckheim, M. Franken, H. Heger, Matthias Huber, M. Knittel, T. Kolster, M. Kueppers, C. Meier, D. Most, S. Paulus, L. Wyrwoll, A. Moser, S. Niessen

    Pathways toward a Decarbonized Future—Impact on Security of Supply and System Stability in a Sustainable German Energy System

    Energies, vol. 14, no. 3

    2021

    DOI: 10.3390/en14030560

    Abstract anzeigen

    Pathways leading to a carbon neutral future for the German energy system have to deal with the expected phase-out of coal-fired power generation, in addition to the shutdown of nuclear power plants and the rapid ramp-up of photovoltaics and wind power generation. An analysis of the expected impact on electricity market, security of supply, and system stability must consider the European context because of the strong coupling—both from an economic and a system operation point of view—through the cross-border power exchange of Germany with its neighbors. This analysis, complemented by options to improve the existing development plans, is the purpose of this paper. We propose a multilevel energy system modeling, including electricity market, network congestion management, and system stability, to identify challenges for the years 2023 and 2035. Out of the results, we would like to highlight the positive role of innovative combined heat and power (CHP) solutions securing power and heat supply, the importance of a network congestion management utilizing flexibility from sector coupling, and the essential network extension plans. Network congestion and reduced security margins will become the new normal. We conclude that future energy systems require expanded flexibilities in combination with forward planning of operation.

    DigitalNachhaltigF: Europan Campus Rottal-Inn

    Beitrag (Sammelband oder Tagungsband)

    O. Walter, Matthias Huber, Kueppers. M., A. Tremel, S. Becker

    Energy system design for deep decarbonization of a sunbelt city by using a hybrid storage approach

    Proceedings of the 13th International Renewable Energy Storage Conference 2019 (IRES 2019), vol. Vol. 4

    2019

    Abstract anzeigen

    With continuously falling cost of renewable power generation and ambitious decarbonization targets, renewable sources are about to rival fossil fuels for energy supply. For a high share of fluctuating renewable generation, large-scale energy storage is likely to be required. In addition to selling electricity, the reliable supply of heat and cold is a further interesting revenue pool, which makes hybrid storage technologies an interesting option. The main feature of hybrid energy storage – as defined here - is to offer charging and especially discharging in different forms of energy by combining different charging, discharging and storage devices. They can address various demands (e.g. electricity and cold) simultaneously. Two hybrid storages, pumped thermal energy storage (PTES) and power-to-heat-to-x (x: heat and/or electricity) energy storage (PHXES), are investigated based on a techno-economic analysis within this work. Both hybrid storage technologies are charged with electricity and can supply heat and electricity during discharging. They are implemented into a simplified energy system model of a prototype city in the earth’s sunbelt in the year 2030 to find a cost-optimal configuration. Different cases are evaluated: a power-to-power case (P2P), where only an electric demand must be addressed and a power-to-power-and-cooling (P2P&C) case, where the electric demand from the P2P case is divided into a residual electric demand and a cooling demand. For both cases, a natural gas-based benchmark scenario and a decarbonized, renewable-based scenario including the hybrid energy storage technologies are calculated. Both, total expenditures and CO2 emissions are lower in the P2P&C scenarios compared to P2P scenarios. PHXES plays a major role in both cases. PTES is part of the cost-optimal solution in the P2P&C decarb scenario, only if its specific cost are further decreased.

    DigitalNachhaltigF: Europan Campus Rottal-Inn

    Zeitschriftenartikel

    C. Müller, T. Falke, A. Hoffrichter, L. Wyrwoll, C. Schmitt, M. Trageser, A. Schnettler, M. Metzger, Matthias Huber, M. Küppers, D. Most, S. Paulus, H. Heger

    Integrated Planning and Evaluation of Multi-Modal Energy Systems for Decarbonization of Germany

    Energy Procedia, vol. 158, no. February, pp. 3482-3487

    2019

    DOI: 10.1016/j.egypro.2019.01.923

    Abstract anzeigen

    For a successful realization of the energy transition and a reduction of greenhouse gas emissions, an integrated view of multiple energy sectors (electricity, heat and mobility) is necessary. The coupling of different energy sectors is seen as an option to achieve the climate goals in a cost-effective way. In this paper, a methodical approach for multi-modal energy system planning and technology impact evaluation is presented. A key feature of the model is a coupled consideration of sectors electricity, heat and mobility. Energy demands, conversion and storage technologies in households, the Commerce, Trade and Services (CTS) area and the industry are modelled employing a bottom-up modelling approach. The model can be used for the calculation of a detailed transition pathway of energy systems taking into account politically defined climate goals. Based on these calculations, in-depth analyses of energy markets as well as transmission and distribution grids can be performed.

    DigitalNachhaltigF: Europan Campus Rottal-Inn

    Zeitschriftenartikel

    C. Müller, A. Hoffrichter, L. Wyrwoll, C. Schmitt, M. Trageser, T. Kulms, D. Beulertz, M. Metzger, M. Durckheim, Matthias Huber, M. Küppers, D. Most, S. Paulus, H. Heber, A. Schnettler

    Modeling framework for planning and operation of multi-modal energy systems in the case of Germany

    Applied Energy, vol. 250, no. 15 September 2019, pp. 1132-1146

    2019

    DOI: 10.1016/j.apenergy.2019.05.094

    Abstract anzeigen

    In order to reach the goals of the United Nations Framework Convention on Climate Change, a stepwise reduction of energy related greenhouse gas emissions as well as an increase in the share of renewable energies is necessary. For a successful realization of these changes in energy supply, an integrated view of multiple energy sectors is necessary. The coupling of different energy sectors is seen as an option to achieve the climate goals in a cost-effective way. In this paper, a methodical approach for multi-modal energy system planning and technology impact evaluation is presented. A key feature of the model is a coupled consideration of the sectors electricity, heat, fuel and mobility. The modeling framework enables system planners to optimally plan future investments in a detailed transition pathway of the energy system of a country, considering politically defined climate goals. Based on these calculations, in-depth analyses of energy markets as well as electrical transmission and distribution grids can be performed using the presented optimization models. Energy demands, conversion and storage technologies in households, the Commerce, Trade and Services (CTS) area and the industry are modeled employing a bottom-up modeling approach. The results for the optimal planning of the German energy system until 2050 show that the combination of an increased share of renewable energies and the direct electrification of heat and mobility sectors together with the use of synthetic fuels are the main drivers to achieve the climate goals in a cost-efficient way.

    GesundF: Europan Campus Rottal-Inn

    Zeitschriftenartikel

    A. Kupferberg, M. Iacoboni, V. Flanagin, M. Huber, Anna-Maria Kasparbauer, T. Baumgartner, G. Hasler, F. Schmidt, C. Borst, S. Glasauer

    Fronto-parietal Coding of Goal-Directed Actions Performed by Artificial Agents

    Human Brain Mapping, vol. 33, no. 3, pp. 1145-1162

    2018

    DOI: 10.1002/hbm.23905

    Abstract anzeigen

    With advances in technology, artificial agents such as humanoid robots will soon become a part of our daily lives. For safe and intuitive collaboration, it is important to understand the goals behind their motor actions. In humans, this process is mediated by changes in activity in fronto-parietal brain areas. The extent to which these areas are activated when observing artificial agents indicates the naturalness and easiness of interaction. Previous studies indicated that fronto-parietal activity does not depend on whether the agent is human or artificial. However, it is unknown whether this activity is modulated by observing grasping (self-related action) and pointing actions (other-related action) performed by an artificial agent depending on the action goal. Therefore, we designed an experiment in which subjects observed human and artificial agents perform pointing and grasping actions aimed at two different object categories suggesting different goals. We found a signal increase in the bilateral inferior parietal lobule and the premotor cortex when tool versus food items were pointed to or grasped by both agents, probably reflecting the association of hand actions with the functional use of tools. Our results show that goal attribution engages the fronto-parietal network not only for observing a human but also a robotic agent for both self-related and social actions. The debriefing after the experiment has shown that actions of human-like artificial agents can be perceived as being goal-directed. Therefore, humans will be able to interact with service robots intuitively in various domains such as education, healthcare, public service, and entertainment.

    DigitalNachhaltigF: Europan Campus Rottal-Inn

    Zeitschriftenartikel

    Matthias Huber, A. Roger, T. Hamacher

    Optimizing long-term investments for a sustainable development of the ASEAN power system

    Energy, vol. 88, no. August, pp. 180-193

    2015

    DOI: 10.1016/j.energy.2015.04.065

    Abstract anzeigen

    The electricity consumption in the ASEAN (Association of East Asian Nations) region is one of the fastest growing in the world and will lead to a dramatic increase in greenhouse gas emissions in the next decades. A decarbonization of the region's electricity supply is thus a very important measure when taking action on global climate change. This paper defines cost-optimal pathways towards a sustainable power system in the region by employing linear optimization. The proposed model simultaneously optimizes the required capacities and the hourly operation of generation, transmission, and storage. The obtained results show that all different kinds of renewable sources will have to be utilized, while none of them should have a share of more than one third. The findings give reason for setting up an ASEAN power grid, as it enables the transportation of electricity from the best sites to load centers and leads to a balancing of the fluctuations from wind and solar generation. We suggest fostering a diversified extension of renewables and to elaborate on political and technical solutions that enable the build up an transnational supergrid.

    DigitalNachhaltigF: Europan Campus Rottal-Inn

    Zeitschriftenartikel

    T. Hamacher, Matthias Huber, J. Dorfner, K. Schaber, A. Bradshaw

    Nuclear fusion and renewable energy forms: Are they compatible?

    Fusion Engineering and Design, vol. 88, no. 6-8, pp. 657-660

    2013

    DOI: 10.1016/j.fusengdes.2013.01.074

    Abstract anzeigen

    Nuclear fusion can be considered as a base-load power plant technology: High investment costs and limited operational flexibility require continuous operation. Wind and solar, on the other hand, as the putative main pillars of a future renewable energy system, are intermittent power sources. The resulting variations that occur on many different time scales require at first sight a rather flexible back-up system to balance this stochastic behavior. Fusion would appear not to be well suited for this task. The situation changes, however, if a large-scale renewable energy system is envisaged based on a transnational, or even transcontinental power grid. The present paper discusses a possible European power system in the year 2050 and beyond. A high percentage share of renewable energies and a strong power grid spanning the whole of Europe and involving neighboring countries, in particular those in North Africa, are assumed. The linear programming model URBS is used to describe the power system. The model optimizes the overall system costs and simulates power plant operation with an hourly resolution for one whole year. The geographical resolution is at least at the country level. The renewable technologies are modeled first on a more local level and then summed together at the country or regional level. The results indicate that the smoothing effects of the large-scale power grid transform the intermittent renewable supply, which is then more compatible with base-load power plants such as fusion reactors.

    DigitalNachhaltigF: Europan Campus Rottal-Inn

    Beitrag (Sammelband oder Tagungsband)

    Matthias Huber, A. Trippe, P. Kuhn, T. Hamacher

    Effects of large scale EV and PV integration on power supply systems in the context of Singapore

    2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe)

    2012

    DOI: 10.1109/ISGTEurope.2012.6465831

    Abstract anzeigen

    Electric vehicles (EVs) are a key technology to reduce dependency on oil imports as well as to diminish environmental effects of individual transportation. Especially in megacities like Singapore where travel distances are moderate, this new mode of transportation is often discussed as a future option. This paper investigates possible effects of large scale EV integration on the power supply system. A unit commitment model combined with an integrated approach for smart charging is used. The mixed-integer linear programming (MILP) formulated unit commitment algorithm cooptimizes energy, regulation, and spinning reserve power. The effects of different charging strategies on the power plant scheduling are analyzed. The power system infrastructure is kept at status quo in a baseline scenario and extended to future scenarios with intermittent photovoltaics (PV) power. Effects on power plants scheduling are evaluated by measuring resulting variable cost of electricity as well as CO 2 -emissions. Moreover, effects of EVs providing regulation and spinning reserve by controllable charging are investigated.

    DigitalI: Institut für Existenzgründung

    Buch (Monographie)

    Thomas Bartscher, A. Huber, J. Stöckl

    Personalcontrolling

    Lehrbriefreihe AKAD GmbH

    2009

    I: Zentrum für Akademische Weiterbildung

    Vortrag

    D. Festner, Andreas Gegenfurtner, B. Meier, A. Babichenko, J. Huber, T. Koch, B. Morgenthaler, S. Schmid, F. Scheider, H. Gruber

    Transfer of training and its determinants

    A study conducted in the domain of occupational health and safety

    4th EARLI Special Interest Group (SIG) 14 Learning and Professional Development Conference, Jyväskylä, Finnland

    2008

    DigitalI: Institut für Existenzgründung

    Beitrag (Sammelband oder Tagungsband)

    Thomas Bartscher, A. Huber

    Personalbeschaffung

    Kulturmarketing, München; Wien

    2008

    ISBN: 978-3486585025

    DigitalI: Institut für Existenzgründung

    Buch (Monographie)

    Thomas Bartscher, A. Huber

    Praktische Personalwirtschaft

    Eine praxisorientierte Einführung

    Lehrbuch, Wiesbaden

    2007

    ISBN: 978-3834902337

    DigitalF: Elektrotechnik und MedientechnikI: Institut für Existenzgründung

    Beitrag (Sammelband oder Tagungsband)

    Thomas Bartscher, A. Huber, Wolfgang Dorner

    Themennetzwerke der Wirtschaft – Eine Untersuchung des Managementcenters Deggendorf zu Chancen der wirtschaftlichen Entwicklung im Teilraum Deggendorf/Plattling

    Projekt RISE – Regional Identity and culture, Strength development & Environment action, Deggendorf

    2006

    DigitalI: Institut für Existenzgründung

    Buch (Monographie)

    Thomas Bartscher, A. Huber

    Personalbeschaffung

    Lehrbrief für den Masterstudiengang „Kulturmarketing“ des Fachhochschul-Fernstudienverbund der Länder Berlin, Brandenburg, Mecklenburg-Vorpommern, Sachsen, Sachsen-Anhalt, Thüringen (FVL), Brandenburg

    2005

    F: Elektrotechnik und MedientechnikI: IQMA

    Vortrag

    Günther Benstetter, R. Schmidt, S. Ascher, M. Kerber, Johannes Grabmeier, A. Huber

    Evaluation of thin oxide reliability by means of wafer level stress-testing

    8th European Parametric Test User Group Meeting, Prien am Chiemsee

    2002